Spaces:
Sleeping
Sleeping
import gradio as gr | |
from openai import OpenAI | |
import time | |
import re | |
# Available models | |
MODELS = [ | |
"Meta-Llama-3.1-405B-Instruct", | |
"Meta-Llama-3.1-70B-Instruct", | |
"Meta-Llama-3.1-8B-Instruct" | |
] | |
def create_client(api_key, base_url): | |
return OpenAI( | |
api_key=api_key, | |
base_url=base_url | |
) | |
def chat_with_ai(message, chat_history, system_prompt): | |
messages = [ | |
{"role": "system", "content": system_prompt}, | |
] | |
for human, ai in chat_history: | |
messages.append({"role": "user", "content": human}) | |
messages.append({"role": "assistant", "content": ai}) | |
messages.append({"role": "user", "content": message}) | |
return messages | |
def respond(message, chat_history, model, system_prompt, thinking_budget, api_key, base_url): | |
client = create_client(api_key, base_url) | |
messages = chat_with_ai(message, chat_history, system_prompt.format(budget=thinking_budget)) | |
response = "" | |
start_time = time.time() | |
try: | |
for chunk in client.chat.completions.create( | |
model=model, | |
messages=messages, | |
stream=True | |
): | |
content = chunk.choices[0].delta.content or "" | |
response += content | |
yield response, time.time() - start_time | |
except Exception as e: | |
yield f"Error: {str(e)}", time.time() - start_time | |
def parse_response(response): | |
answer_match = re.search(r'<answer>(.*?)</answer>', response, re.DOTALL) | |
reflection_match = re.search(r'<reflection>(.*?)</reflection>', response, re.DOTALL) | |
answer = answer_match.group(1).strip() if answer_match else "" | |
reflection = reflection_match.group(1).strip() if reflection_match else "" | |
steps = re.findall(r'<step>(.*?)</step>', response, re.DOTALL) | |
return answer, reflection, steps | |
def process_chat(message, history, model, system_prompt, thinking_budget, api_key, base_url): | |
if not api_key or not base_url: | |
history.append((message, "Please provide both API Key and Base URL before starting the chat.")) | |
return history, history | |
full_response = "" | |
thinking_time = 0 | |
for response, elapsed_time in respond(message, history, model, system_prompt, thinking_budget, api_key, base_url): | |
full_response = response | |
thinking_time = elapsed_time | |
if full_response.startswith("Error:"): | |
history.append((message, full_response)) | |
return history, history | |
answer, reflection, steps = parse_response(full_response) | |
formatted_response = f"**Answer:** {answer}\n\n**Reflection:** {reflection}\n\n**Thinking Steps:**\n" | |
for i, step in enumerate(steps, 1): | |
formatted_response += f"**Step {i}:** {step}\n" | |
formatted_response += f"\n**Thinking time:** {thinking_time:.2f} s" | |
history.append((message, formatted_response)) | |
return history, history | |
with gr.Blocks() as demo: | |
gr.Markdown("# Llama3.1-Instruct-O1") | |
gr.Markdown("[Powered by Llama3.1 models through SN Cloud](https://sambanova.ai/fast-api?api_ref=907266)") | |
with gr.Row(): | |
api_key = gr.Textbox(label="API Key", type="password") | |
base_url = gr.Textbox(label="Base URL", value="https://api.endpoints.anyscale.com/v1") | |
with gr.Row(): | |
model = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0]) | |
thinking_budget = gr.Slider(minimum=1, maximum=100, value=1, step=1, label="Thinking Budget") | |
system_prompt = gr.Textbox( | |
label="System Prompt", | |
value=""" | |
You are a helpful assistant in normal conversation. | |
When given a problem to solve, you are an expert problem-solving assistant. Your task is to provide a detailed, step-by-step solution to a given question. Follow these instructions carefully: | |
1. Read the given question carefully and reset counter between <count> and </count> to {budget} | |
2. Generate a detailed, logical step-by-step solution. | |
3. Enclose each step of your solution within <step> and </step> tags. | |
4. You are allowed to use at most {budget} steps (starting budget), keep track of it by counting down within tags <count> </count>, STOP GENERATING MORE STEPS when hitting 0, you don't have to use all of them. | |
5. Do a self-reflection when you are unsure about how to proceed, based on the self-reflection and reward, decides whether you need to return to the previous steps. | |
6. After completing the solution steps, reorganize and synthesize the steps into the final answer within <answer> and </answer> tags. | |
7. Provide a critical, honest and subjective self-evaluation of your reasoning process within <reflection> and </reflection> tags. | |
8. Assign a quality score to your solution as a float between 0.0 (lowest quality) and 1.0 (highest quality), enclosed in <reward> and </reward> tags. | |
Example format: | |
<count> [starting budget] </count> | |
<step> [Content of step 1] </step> | |
<count> [remaining budget] </count> | |
<step> [Content of step 2] </step> | |
<reflection> [Evaluation of the steps so far] </reflection> | |
<reward> [Float between 0.0 and 1.0] </reward> | |
<count> [remaining budget] </count> | |
<step> [Content of step 3 or Content of some previous step] </step> | |
<count> [remaining budget] </count> | |
... | |
<step> [Content of final step] </step> | |
<count> [remaining budget] </count> | |
<answer> [Final Answer] </answer> | |
<reflection> [Evaluation of the solution] </reflection> | |
<reward> [Float between 0.0 and 1.0] </reward> | |
""", | |
lines=10 | |
) | |
chatbot_ui = gr.Chatbot() | |
msg = gr.Textbox(label="Type your message here...") | |
clear = gr.Button("Clear Chat") | |
chat_history = gr.State([]) | |
msg.submit( | |
process_chat, # Use the renamed function | |
[msg, chat_history, model, system_prompt, thinking_budget, api_key, base_url], | |
[chatbot_ui, chat_history] | |
) | |
clear.click(lambda: ([], []), None, [chatbot_ui, chat_history], queue=False) | |
demo.launch() |