Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
import logging | |
from typing import List, Optional, Tuple | |
import torch | |
from fvcore.nn import sigmoid_focal_loss_jit | |
from torch import Tensor, nn | |
from torch.nn import functional as F | |
from detectron2.layers import ShapeSpec, batched_nms | |
from detectron2.structures import Boxes, ImageList, Instances, pairwise_point_box_distance | |
from detectron2.utils.events import get_event_storage | |
from ..anchor_generator import DefaultAnchorGenerator | |
from ..backbone import Backbone | |
from ..box_regression import Box2BoxTransformLinear, _dense_box_regression_loss | |
from .dense_detector import DenseDetector | |
from .retinanet import RetinaNetHead | |
__all__ = ["FCOS"] | |
logger = logging.getLogger(__name__) | |
class FCOS(DenseDetector): | |
""" | |
Implement FCOS in :paper:`fcos`. | |
""" | |
def __init__( | |
self, | |
*, | |
backbone: Backbone, | |
head: nn.Module, | |
head_in_features: Optional[List[str]] = None, | |
box2box_transform=None, | |
num_classes, | |
center_sampling_radius: float = 1.5, | |
focal_loss_alpha=0.25, | |
focal_loss_gamma=2.0, | |
test_score_thresh=0.2, | |
test_topk_candidates=1000, | |
test_nms_thresh=0.6, | |
max_detections_per_image=100, | |
pixel_mean, | |
pixel_std, | |
): | |
""" | |
Args: | |
center_sampling_radius: radius of the "center" of a groundtruth box, | |
within which all anchor points are labeled positive. | |
Other arguments mean the same as in :class:`RetinaNet`. | |
""" | |
super().__init__( | |
backbone, head, head_in_features, pixel_mean=pixel_mean, pixel_std=pixel_std | |
) | |
self.num_classes = num_classes | |
# FCOS uses one anchor point per location. | |
# We represent the anchor point by a box whose size equals the anchor stride. | |
feature_shapes = backbone.output_shape() | |
fpn_strides = [feature_shapes[k].stride for k in self.head_in_features] | |
self.anchor_generator = DefaultAnchorGenerator( | |
sizes=[[k] for k in fpn_strides], aspect_ratios=[1.0], strides=fpn_strides | |
) | |
# FCOS parameterizes box regression by a linear transform, | |
# where predictions are normalized by anchor stride (equal to anchor size). | |
if box2box_transform is None: | |
box2box_transform = Box2BoxTransformLinear(normalize_by_size=True) | |
self.box2box_transform = box2box_transform | |
self.center_sampling_radius = float(center_sampling_radius) | |
# Loss parameters: | |
self.focal_loss_alpha = focal_loss_alpha | |
self.focal_loss_gamma = focal_loss_gamma | |
# Inference parameters: | |
self.test_score_thresh = test_score_thresh | |
self.test_topk_candidates = test_topk_candidates | |
self.test_nms_thresh = test_nms_thresh | |
self.max_detections_per_image = max_detections_per_image | |
def forward_training(self, images, features, predictions, gt_instances): | |
# Transpose the Hi*Wi*A dimension to the middle: | |
pred_logits, pred_anchor_deltas, pred_centerness = self._transpose_dense_predictions( | |
predictions, [self.num_classes, 4, 1] | |
) | |
anchors = self.anchor_generator(features) | |
gt_labels, gt_boxes = self.label_anchors(anchors, gt_instances) | |
return self.losses( | |
anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes, pred_centerness | |
) | |
def match_anchors(self, anchors: List[Boxes], gt_instances: List[Instances]): | |
""" | |
Match anchors with ground truth boxes. | |
Args: | |
anchors: #level boxes, from the highest resolution to lower resolution | |
gt_instances: ground truth instances per image | |
Returns: | |
List[Tensor]: | |
#image tensors, each is a vector of matched gt | |
indices (or -1 for unmatched anchors) for all anchors. | |
""" | |
num_anchors_per_level = [len(x) for x in anchors] | |
anchors = Boxes.cat(anchors) # Rx4 | |
anchor_centers = anchors.get_centers() # Rx2 | |
anchor_sizes = anchors.tensor[:, 2] - anchors.tensor[:, 0] # R | |
lower_bound = anchor_sizes * 4 | |
lower_bound[: num_anchors_per_level[0]] = 0 | |
upper_bound = anchor_sizes * 8 | |
upper_bound[-num_anchors_per_level[-1] :] = float("inf") | |
matched_indices = [] | |
for gt_per_image in gt_instances: | |
gt_centers = gt_per_image.gt_boxes.get_centers() # Nx2 | |
# FCOS with center sampling: anchor point must be close enough to gt center. | |
pairwise_match = (anchor_centers[:, None, :] - gt_centers[None, :, :]).abs_().max( | |
dim=2 | |
).values < self.center_sampling_radius * anchor_sizes[:, None] | |
pairwise_dist = pairwise_point_box_distance(anchor_centers, gt_per_image.gt_boxes) | |
# The original FCOS anchor matching rule: anchor point must be inside gt | |
pairwise_match &= pairwise_dist.min(dim=2).values > 0 | |
# Multilevel anchor matching in FCOS: each anchor is only responsible | |
# for certain scale range. | |
pairwise_dist = pairwise_dist.max(dim=2).values | |
pairwise_match &= (pairwise_dist > lower_bound[:, None]) & ( | |
pairwise_dist < upper_bound[:, None] | |
) | |
# Match the GT box with minimum area, if there are multiple GT matches | |
gt_areas = gt_per_image.gt_boxes.area() # N | |
pairwise_match = pairwise_match.to(torch.float32) * (1e8 - gt_areas[None, :]) | |
min_values, matched_idx = pairwise_match.max(dim=1) # R, per-anchor match | |
matched_idx[min_values < 1e-5] = -1 # Unmatched anchors are assigned -1 | |
matched_indices.append(matched_idx) | |
return matched_indices | |
def label_anchors(self, anchors, gt_instances): | |
""" | |
Same interface as :meth:`RetinaNet.label_anchors`, but implemented with FCOS | |
anchor matching rule. | |
Unlike RetinaNet, there are no ignored anchors. | |
""" | |
matched_indices = self.match_anchors(anchors, gt_instances) | |
matched_labels, matched_boxes = [], [] | |
for gt_index, gt_per_image in zip(matched_indices, gt_instances): | |
label = gt_per_image.gt_classes[gt_index.clip(min=0)] | |
label[gt_index < 0] = self.num_classes # background | |
matched_gt_boxes = gt_per_image.gt_boxes[gt_index.clip(min=0)] | |
matched_labels.append(label) | |
matched_boxes.append(matched_gt_boxes) | |
return matched_labels, matched_boxes | |
def losses( | |
self, anchors, pred_logits, gt_labels, pred_anchor_deltas, gt_boxes, pred_centerness | |
): | |
""" | |
This method is almost identical to :meth:`RetinaNet.losses`, with an extra | |
"loss_centerness" in the returned dict. | |
""" | |
num_images = len(gt_labels) | |
gt_labels = torch.stack(gt_labels) # (N, R) | |
pos_mask = (gt_labels >= 0) & (gt_labels != self.num_classes) | |
num_pos_anchors = pos_mask.sum().item() | |
get_event_storage().put_scalar("num_pos_anchors", num_pos_anchors / num_images) | |
normalizer = self._ema_update("loss_normalizer", max(num_pos_anchors, 1), 300) | |
# classification and regression loss | |
gt_labels_target = F.one_hot(gt_labels, num_classes=self.num_classes + 1)[ | |
:, :, :-1 | |
] # no loss for the last (background) class | |
loss_cls = sigmoid_focal_loss_jit( | |
torch.cat(pred_logits, dim=1), | |
gt_labels_target.to(pred_logits[0].dtype), | |
alpha=self.focal_loss_alpha, | |
gamma=self.focal_loss_gamma, | |
reduction="sum", | |
) | |
loss_box_reg = _dense_box_regression_loss( | |
anchors, | |
self.box2box_transform, | |
pred_anchor_deltas, | |
[x.tensor for x in gt_boxes], | |
pos_mask, | |
box_reg_loss_type="giou", | |
) | |
ctrness_targets = self.compute_ctrness_targets(anchors, gt_boxes) # NxR | |
pred_centerness = torch.cat(pred_centerness, dim=1).squeeze(dim=2) # NxR | |
ctrness_loss = F.binary_cross_entropy_with_logits( | |
pred_centerness[pos_mask], ctrness_targets[pos_mask], reduction="sum" | |
) | |
return { | |
"loss_fcos_cls": loss_cls / normalizer, | |
"loss_fcos_loc": loss_box_reg / normalizer, | |
"loss_fcos_ctr": ctrness_loss / normalizer, | |
} | |
def compute_ctrness_targets(self, anchors, gt_boxes): # NxR | |
anchors = Boxes.cat(anchors).tensor # Rx4 | |
reg_targets = [self.box2box_transform.get_deltas(anchors, m.tensor) for m in gt_boxes] | |
reg_targets = torch.stack(reg_targets, dim=0) # NxRx4 | |
if len(reg_targets) == 0: | |
return reg_targets.new_zeros(len(reg_targets)) | |
left_right = reg_targets[:, :, [0, 2]] | |
top_bottom = reg_targets[:, :, [1, 3]] | |
ctrness = (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * ( | |
top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0] | |
) | |
return torch.sqrt(ctrness) | |
def forward_inference( | |
self, images: ImageList, features: List[Tensor], predictions: List[List[Tensor]] | |
): | |
pred_logits, pred_anchor_deltas, pred_centerness = self._transpose_dense_predictions( | |
predictions, [self.num_classes, 4, 1] | |
) | |
anchors = self.anchor_generator(features) | |
results: List[Instances] = [] | |
for img_idx, image_size in enumerate(images.image_sizes): | |
scores_per_image = [ | |
# Multiply and sqrt centerness & classification scores | |
# (See eqn. 4 in https://arxiv.org/abs/2006.09214) | |
torch.sqrt(x[img_idx].sigmoid_() * y[img_idx].sigmoid_()) | |
for x, y in zip(pred_logits, pred_centerness) | |
] | |
deltas_per_image = [x[img_idx] for x in pred_anchor_deltas] | |
results_per_image = self.inference_single_image( | |
anchors, scores_per_image, deltas_per_image, image_size | |
) | |
results.append(results_per_image) | |
return results | |
def inference_single_image( | |
self, | |
anchors: List[Boxes], | |
box_cls: List[Tensor], | |
box_delta: List[Tensor], | |
image_size: Tuple[int, int], | |
): | |
""" | |
Identical to :meth:`RetinaNet.inference_single_image. | |
""" | |
pred = self._decode_multi_level_predictions( | |
anchors, | |
box_cls, | |
box_delta, | |
self.test_score_thresh, | |
self.test_topk_candidates, | |
image_size, | |
) | |
keep = batched_nms( | |
pred.pred_boxes.tensor, pred.scores, pred.pred_classes, self.test_nms_thresh | |
) | |
return pred[keep[: self.max_detections_per_image]] | |
class FCOSHead(RetinaNetHead): | |
""" | |
The head used in :paper:`fcos`. It adds an additional centerness | |
prediction branch on top of :class:`RetinaNetHead`. | |
""" | |
def __init__(self, *, input_shape: List[ShapeSpec], conv_dims: List[int], **kwargs): | |
super().__init__(input_shape=input_shape, conv_dims=conv_dims, num_anchors=1, **kwargs) | |
# Unlike original FCOS, we do not add an additional learnable scale layer | |
# because it's found to have no benefits after normalizing regression targets by stride. | |
self._num_features = len(input_shape) | |
self.ctrness = nn.Conv2d(conv_dims[-1], 1, kernel_size=3, stride=1, padding=1) | |
torch.nn.init.normal_(self.ctrness.weight, std=0.01) | |
torch.nn.init.constant_(self.ctrness.bias, 0) | |
def forward(self, features): | |
assert len(features) == self._num_features | |
logits = [] | |
bbox_reg = [] | |
ctrness = [] | |
for feature in features: | |
logits.append(self.cls_score(self.cls_subnet(feature))) | |
bbox_feature = self.bbox_subnet(feature) | |
bbox_reg.append(self.bbox_pred(bbox_feature)) | |
ctrness.append(self.ctrness(bbox_feature)) | |
return logits, bbox_reg, ctrness | |