snicolau's picture
Upload 772 files
500565b verified
raw
history blame
11.2 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import numpy as np
import torch
from detectron2.config import configurable
from detectron2.layers import ShapeSpec, batched_nms_rotated
from detectron2.structures import Instances, RotatedBoxes, pairwise_iou_rotated
from detectron2.utils.events import get_event_storage
from ..box_regression import Box2BoxTransformRotated
from ..poolers import ROIPooler
from ..proposal_generator.proposal_utils import add_ground_truth_to_proposals
from .box_head import build_box_head
from .fast_rcnn import FastRCNNOutputLayers
from .roi_heads import ROI_HEADS_REGISTRY, StandardROIHeads
logger = logging.getLogger(__name__)
"""
Shape shorthand in this module:
N: number of images in the minibatch
R: number of ROIs, combined over all images, in the minibatch
Ri: number of ROIs in image i
K: number of foreground classes. E.g.,there are 80 foreground classes in COCO.
Naming convention:
deltas: refers to the 5-d (dx, dy, dw, dh, da) deltas that parameterize the box2box
transform (see :class:`box_regression.Box2BoxTransformRotated`).
pred_class_logits: predicted class scores in [-inf, +inf]; use
softmax(pred_class_logits) to estimate P(class).
gt_classes: ground-truth classification labels in [0, K], where [0, K) represent
foreground object classes and K represents the background class.
pred_proposal_deltas: predicted rotated box2box transform deltas for transforming proposals
to detection box predictions.
gt_proposal_deltas: ground-truth rotated box2box transform deltas
"""
def fast_rcnn_inference_rotated(
boxes, scores, image_shapes, score_thresh, nms_thresh, topk_per_image
):
"""
Call `fast_rcnn_inference_single_image_rotated` for all images.
Args:
boxes (list[Tensor]): A list of Tensors of predicted class-specific or class-agnostic
boxes for each image. Element i has shape (Ri, K * 5) if doing
class-specific regression, or (Ri, 5) if doing class-agnostic
regression, where Ri is the number of predicted objects for image i.
This is compatible with the output of :meth:`FastRCNNOutputLayers.predict_boxes`.
scores (list[Tensor]): A list of Tensors of predicted class scores for each image.
Element i has shape (Ri, K + 1), where Ri is the number of predicted objects
for image i. Compatible with the output of :meth:`FastRCNNOutputLayers.predict_probs`.
image_shapes (list[tuple]): A list of (width, height) tuples for each image in the batch.
score_thresh (float): Only return detections with a confidence score exceeding this
threshold.
nms_thresh (float): The threshold to use for box non-maximum suppression. Value in [0, 1].
topk_per_image (int): The number of top scoring detections to return. Set < 0 to return
all detections.
Returns:
instances: (list[Instances]): A list of N instances, one for each image in the batch,
that stores the topk most confidence detections.
kept_indices: (list[Tensor]): A list of 1D tensor of length of N, each element indicates
the corresponding boxes/scores index in [0, Ri) from the input, for image i.
"""
result_per_image = [
fast_rcnn_inference_single_image_rotated(
boxes_per_image, scores_per_image, image_shape, score_thresh, nms_thresh, topk_per_image
)
for scores_per_image, boxes_per_image, image_shape in zip(scores, boxes, image_shapes)
]
return [x[0] for x in result_per_image], [x[1] for x in result_per_image]
def fast_rcnn_inference_single_image_rotated(
boxes, scores, image_shape, score_thresh, nms_thresh, topk_per_image
):
"""
Single-image inference. Return rotated bounding-box detection results by thresholding
on scores and applying rotated non-maximum suppression (Rotated NMS).
Args:
Same as `fast_rcnn_inference_rotated`, but with rotated boxes, scores, and image shapes
per image.
Returns:
Same as `fast_rcnn_inference_rotated`, but for only one image.
"""
valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1)
if not valid_mask.all():
boxes = boxes[valid_mask]
scores = scores[valid_mask]
B = 5 # box dimension
scores = scores[:, :-1]
num_bbox_reg_classes = boxes.shape[1] // B
# Convert to Boxes to use the `clip` function ...
boxes = RotatedBoxes(boxes.reshape(-1, B))
boxes.clip(image_shape)
boxes = boxes.tensor.view(-1, num_bbox_reg_classes, B) # R x C x B
# Filter results based on detection scores
filter_mask = scores > score_thresh # R x K
# R' x 2. First column contains indices of the R predictions;
# Second column contains indices of classes.
filter_inds = filter_mask.nonzero()
if num_bbox_reg_classes == 1:
boxes = boxes[filter_inds[:, 0], 0]
else:
boxes = boxes[filter_mask]
scores = scores[filter_mask]
# Apply per-class Rotated NMS
keep = batched_nms_rotated(boxes, scores, filter_inds[:, 1], nms_thresh)
if topk_per_image >= 0:
keep = keep[:topk_per_image]
boxes, scores, filter_inds = boxes[keep], scores[keep], filter_inds[keep]
result = Instances(image_shape)
result.pred_boxes = RotatedBoxes(boxes)
result.scores = scores
result.pred_classes = filter_inds[:, 1]
return result, filter_inds[:, 0]
class RotatedFastRCNNOutputLayers(FastRCNNOutputLayers):
"""
Two linear layers for predicting Rotated Fast R-CNN outputs.
"""
@classmethod
def from_config(cls, cfg, input_shape):
args = super().from_config(cfg, input_shape)
args["box2box_transform"] = Box2BoxTransformRotated(
weights=cfg.MODEL.ROI_BOX_HEAD.BBOX_REG_WEIGHTS
)
return args
def inference(self, predictions, proposals):
"""
Returns:
list[Instances]: same as `fast_rcnn_inference_rotated`.
list[Tensor]: same as `fast_rcnn_inference_rotated`.
"""
boxes = self.predict_boxes(predictions, proposals)
scores = self.predict_probs(predictions, proposals)
image_shapes = [x.image_size for x in proposals]
return fast_rcnn_inference_rotated(
boxes,
scores,
image_shapes,
self.test_score_thresh,
self.test_nms_thresh,
self.test_topk_per_image,
)
@ROI_HEADS_REGISTRY.register()
class RROIHeads(StandardROIHeads):
"""
This class is used by Rotated Fast R-CNN to detect rotated boxes.
For now, it only supports box predictions but not mask or keypoints.
"""
@configurable
def __init__(self, **kwargs):
"""
NOTE: this interface is experimental.
"""
super().__init__(**kwargs)
assert (
not self.mask_on and not self.keypoint_on
), "Mask/Keypoints not supported in Rotated ROIHeads."
assert not self.train_on_pred_boxes, "train_on_pred_boxes not implemented for RROIHeads!"
@classmethod
def _init_box_head(cls, cfg, input_shape):
# fmt: off
in_features = cfg.MODEL.ROI_HEADS.IN_FEATURES
pooler_resolution = cfg.MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION
pooler_scales = tuple(1.0 / input_shape[k].stride for k in in_features)
sampling_ratio = cfg.MODEL.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
pooler_type = cfg.MODEL.ROI_BOX_HEAD.POOLER_TYPE
# fmt: on
assert pooler_type in ["ROIAlignRotated"], pooler_type
# assume all channel counts are equal
in_channels = [input_shape[f].channels for f in in_features][0]
box_pooler = ROIPooler(
output_size=pooler_resolution,
scales=pooler_scales,
sampling_ratio=sampling_ratio,
pooler_type=pooler_type,
)
box_head = build_box_head(
cfg, ShapeSpec(channels=in_channels, height=pooler_resolution, width=pooler_resolution)
)
# This line is the only difference v.s. StandardROIHeads
box_predictor = RotatedFastRCNNOutputLayers(cfg, box_head.output_shape)
return {
"box_in_features": in_features,
"box_pooler": box_pooler,
"box_head": box_head,
"box_predictor": box_predictor,
}
@torch.no_grad()
def label_and_sample_proposals(self, proposals, targets):
"""
Prepare some proposals to be used to train the RROI heads.
It performs box matching between `proposals` and `targets`, and assigns
training labels to the proposals.
It returns `self.batch_size_per_image` random samples from proposals and groundtruth boxes,
with a fraction of positives that is no larger than `self.positive_sample_fraction.
Args:
See :meth:`StandardROIHeads.forward`
Returns:
list[Instances]: length `N` list of `Instances`s containing the proposals
sampled for training. Each `Instances` has the following fields:
- proposal_boxes: the rotated proposal boxes
- gt_boxes: the ground-truth rotated boxes that the proposal is assigned to
(this is only meaningful if the proposal has a label > 0; if label = 0
then the ground-truth box is random)
- gt_classes: the ground-truth classification lable for each proposal
"""
if self.proposal_append_gt:
proposals = add_ground_truth_to_proposals(targets, proposals)
proposals_with_gt = []
num_fg_samples = []
num_bg_samples = []
for proposals_per_image, targets_per_image in zip(proposals, targets):
has_gt = len(targets_per_image) > 0
match_quality_matrix = pairwise_iou_rotated(
targets_per_image.gt_boxes, proposals_per_image.proposal_boxes
)
matched_idxs, matched_labels = self.proposal_matcher(match_quality_matrix)
sampled_idxs, gt_classes = self._sample_proposals(
matched_idxs, matched_labels, targets_per_image.gt_classes
)
proposals_per_image = proposals_per_image[sampled_idxs]
proposals_per_image.gt_classes = gt_classes
if has_gt:
sampled_targets = matched_idxs[sampled_idxs]
proposals_per_image.gt_boxes = targets_per_image.gt_boxes[sampled_targets]
num_bg_samples.append((gt_classes == self.num_classes).sum().item())
num_fg_samples.append(gt_classes.numel() - num_bg_samples[-1])
proposals_with_gt.append(proposals_per_image)
# Log the number of fg/bg samples that are selected for training ROI heads
storage = get_event_storage()
storage.put_scalar("roi_head/num_fg_samples", np.mean(num_fg_samples))
storage.put_scalar("roi_head/num_bg_samples", np.mean(num_bg_samples))
return proposals_with_gt