Spaces:
Sleeping
Sleeping
DeepLab in Detectron2
In this repository, we implement DeepLabV3 and DeepLabV3+ in Detectron2.
Installation
Install Detectron2 following the instructions.
Training
To train a model with 8 GPUs run:
cd /path/to/detectron2/projects/DeepLab
python train_net.py --config-file configs/Cityscapes-SemanticSegmentation/deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16.yaml --num-gpus 8
Evaluation
Model evaluation can be done similarly:
cd /path/to/detectron2/projects/DeepLab
python train_net.py --config-file configs/Cityscapes-SemanticSegmentation/deeplab_v3_plus_R_103_os16_mg124_poly_90k_bs16.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint
Cityscapes Semantic Segmentation
Cityscapes models are trained with ImageNet pretraining.
Method | Backbone | Output resolution |
mIoU | model id | download |
---|---|---|---|---|---|
DeepLabV3 | R101-DC5 | 1024Γ2048 | 76.7 | - | - | - |
DeepLabV3 | R103-DC5 | 1024Γ2048 | 78.5 | 28041665 | model | metrics |
DeepLabV3+ | R101-DC5 | 1024Γ2048 | 78.1 | - | - | - |
DeepLabV3+ | R103-DC5 | 1024Γ2048 | 80.0 | 28054032 | model | metrics |
Note:
- R103: a ResNet-101 with its first 7x7 convolution replaced by 3 3x3 convolutions. This modification has been used in most semantic segmentation papers. We pre-train this backbone on ImageNet using the default recipe of pytorch examples.
- DC5 means using dilated convolution in
res5
.
Citing DeepLab
If you use DeepLab, please use the following BibTeX entry.
- DeepLabv3+:
@inproceedings{deeplabv3plus2018,
title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation},
author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam},
booktitle={ECCV},
year={2018}
}
- DeepLabv3:
@article{deeplabv32018,
title={Rethinking atrous convolution for semantic image segmentation},
author={Chen, Liang-Chieh and Papandreou, George and Schroff, Florian and Adam, Hartwig},
journal={arXiv:1706.05587},
year={2017}
}