Spaces:
Sleeping
Sleeping
# PointRend: Image Segmentation as Rendering | |
Alexander Kirillov, Yuxin Wu, Kaiming He, Ross Girshick | |
[[`arXiv`](https://arxiv.org/abs/1912.08193)] [[`BibTeX`](#CitingPointRend)] | |
<div align="center"> | |
<img src="https://alexander-kirillov.github.io/images/kirillov2019pointrend.jpg"/> | |
</div><br/> | |
In this repository, we release code for PointRend in Detectron2. PointRend can be flexibly applied to both instance and semantic segmentation tasks by building on top of existing state-of-the-art models. | |
## Quick start and visualization | |
This [Colab Notebook](https://colab.research.google.com/drive/1isGPL5h5_cKoPPhVL9XhMokRtHDvmMVL) tutorial contains examples of PointRend usage and visualizations of its point sampling stages. | |
## Training | |
To train a model with 8 GPUs run: | |
```bash | |
cd /path/to/detectron2/projects/PointRend | |
python train_net.py --config-file configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml --num-gpus 8 | |
``` | |
## Evaluation | |
Model evaluation can be done similarly: | |
```bash | |
cd /path/to/detectron2/projects/PointRend | |
python train_net.py --config-file configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml --eval-only MODEL.WEIGHTS /path/to/model_checkpoint | |
``` | |
# Pretrained Models | |
## Instance Segmentation | |
#### COCO | |
<table><tbody> | |
<!-- START TABLE --> | |
<!-- TABLE HEADER --> | |
<th valign="bottom">Mask<br/>head</th> | |
<th valign="bottom">Backbone</th> | |
<th valign="bottom">lr<br/>sched</th> | |
<th valign="bottom">Output<br/>resolution</th> | |
<th valign="bottom">mask<br/>AP</th> | |
<th valign="bottom">mask<br/>AP*</th> | |
<th valign="bottom">model id</th> | |
<th valign="bottom">download</th> | |
<!-- TABLE BODY --> | |
<tr><td align="left"><a href="configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml">PointRend</a></td> | |
<td align="center">R50-FPN</td> | |
<td align="center">1×</td> | |
<td align="center">224×224</td> | |
<td align="center">36.2</td> | |
<td align="center">39.7</td> | |
<td align="center">164254221</td> | |
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco/164254221/model_final_736f5a.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco/164254221/metrics.json">metrics</a></td> | |
</tr> | |
<tr><td align="left"><a href="configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml">PointRend</a></td> | |
<td align="center">R50-FPN</td> | |
<td align="center">3×</td> | |
<td align="center">224×224</td> | |
<td align="center">38.3</td> | |
<td align="center">41.6</td> | |
<td align="center">164955410</td> | |
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco/164955410/model_final_edd263.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco/164955410/metrics.json">metrics</a></td> | |
</tr> | |
</tr> | |
<tr><td align="left"><a href="configs/InstanceSegmentation/pointrend_rcnn_R_101_FPN_3x_coco.yaml">PointRend</a></td> | |
<td align="center">R101-FPN</td> | |
<td align="center">3×</td> | |
<td align="center">224×224</td> | |
<td align="center">40.1</td> | |
<td align="center">43.8</td> | |
<td align="center"></td> | |
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_101_FPN_3x_coco/28119983/model_final_3f4d2a.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_101_FPN_3x_coco/28119983/metrics.json">metrics</a></td> | |
</tr> | |
</tr> | |
<tr><td align="left"><a href="configs/InstanceSegmentation/pointrend_rcnn_X_101_32x8d_FPN_3x_coco.yaml">PointRend</a></td> | |
<td align="center">X101-FPN</td> | |
<td align="center">3×</td> | |
<td align="center">224×224</td> | |
<td align="center">41.1</td> | |
<td align="center">44.7</td> | |
<td align="center"></td> | |
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_X_101_32x8d_FPN_3x_coco/28119989/model_final_ba17b9.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_X_101_32x8d_FPN_3x_coco/28119989/metrics.json">metrics</a></td> | |
</tr> | |
</tbody></table> | |
AP* is COCO mask AP evaluated against the higher-quality LVIS annotations; see the paper for details. | |
Run `python detectron2/datasets/prepare_cocofied_lvis.py` to prepare GT files for AP* evaluation. | |
Since LVIS annotations are not exhaustive, `lvis-api` and not `cocoapi` should be used to evaluate AP*. | |
#### Cityscapes | |
Cityscapes model is trained with ImageNet pretraining. | |
<table><tbody> | |
<!-- START TABLE --> | |
<!-- TABLE HEADER --> | |
<th valign="bottom">Mask<br/>head</th> | |
<th valign="bottom">Backbone</th> | |
<th valign="bottom">lr<br/>sched</th> | |
<th valign="bottom">Output<br/>resolution</th> | |
<th valign="bottom">mask<br/>AP</th> | |
<th valign="bottom">model id</th> | |
<th valign="bottom">download</th> | |
<!-- TABLE BODY --> | |
<tr><td align="left"><a href="configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_cityscapes.yaml">PointRend</a></td> | |
<td align="center">R50-FPN</td> | |
<td align="center">1×</td> | |
<td align="center">224×224</td> | |
<td align="center">35.9</td> | |
<td align="center">164255101</td> | |
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_cityscapes/164255101/model_final_115bfb.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_cityscapes/164255101/metrics.json">metrics</a></td> | |
</tr> | |
</tbody></table> | |
## Semantic Segmentation | |
#### Cityscapes | |
Cityscapes model is trained with ImageNet pretraining. | |
<table><tbody> | |
<!-- START TABLE --> | |
<!-- TABLE HEADER --> | |
<th valign="bottom">Method</th> | |
<th valign="bottom">Backbone</th> | |
<th valign="bottom">Output<br/>resolution</th> | |
<th valign="bottom">mIoU</th> | |
<th valign="bottom">model id</th> | |
<th valign="bottom">download</th> | |
<!-- TABLE BODY --> | |
<tr><td align="left"><a href="configs/SemanticSegmentation/pointrend_semantic_R_101_FPN_1x_cityscapes.yaml">SemanticFPN + PointRend</a></td> | |
<td align="center">R101-FPN</td> | |
<td align="center">1024×2048</td> | |
<td align="center">78.9</td> | |
<td align="center">202576688</td> | |
<td align="center"><a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/SemanticSegmentation/pointrend_semantic_R_101_FPN_1x_cityscapes/202576688/model_final_cf6ac1.pkl">model</a> | <a href="https://dl.fbaipublicfiles.com/detectron2/PointRend/SemanticSegmentation/pointrend_semantic_R_101_FPN_1x_cityscapes/202576688/metrics.json">metrics</a></td> | |
</tr> | |
</tbody></table> | |
## <a name="CitingPointRend"></a>Citing PointRend | |
If you use PointRend, please use the following BibTeX entry. | |
```BibTeX | |
@InProceedings{kirillov2019pointrend, | |
title={{PointRend}: Image Segmentation as Rendering}, | |
author={Alexander Kirillov and Yuxin Wu and Kaiming He and Ross Girshick}, | |
journal={ArXiv:1912.08193}, | |
year={2019} | |
} | |
``` | |
## <a name="CitingImplicitPointRend"></a>Citing Implicit PointRend | |
If you use Implicit PointRend, please use the following BibTeX entry. | |
```BibTeX | |
@InProceedings{cheng2021pointly, | |
title={Pointly-Supervised Instance Segmentation, | |
author={Bowen Cheng and Omkar Parkhi and Alexander Kirillov}, | |
journal={ArXiv}, | |
year={2021} | |
} | |
``` | |