Spaces:
Sleeping
Sleeping
# Copyright (c) Facebook, Inc. and its affiliates. | |
import numpy as np | |
import unittest | |
import torch | |
from detectron2.layers import DeformConv, ModulatedDeformConv | |
from detectron2.utils.env import TORCH_VERSION | |
class DeformableTest(unittest.TestCase): | |
def test_forward_output(self): | |
device = torch.device("cuda") | |
N, C, H, W = shape = 1, 1, 5, 5 | |
kernel_size = 3 | |
padding = 1 | |
inputs = torch.arange(np.prod(shape), dtype=torch.float32).reshape(*shape).to(device) | |
""" | |
0 1 2 3 4 | |
5 6 7 8 9 | |
10 11 12 13 14 | |
15 16 17 18 19 | |
20 21 22 23 24 | |
""" | |
offset_channels = kernel_size * kernel_size * 2 | |
offset = torch.full((N, offset_channels, H, W), 0.5, dtype=torch.float32).to(device) | |
# Test DCN v1 | |
deform = DeformConv(C, C, kernel_size=kernel_size, padding=padding).to(device) | |
deform.weight = torch.nn.Parameter(torch.ones_like(deform.weight)) | |
output = deform(inputs, offset) | |
output = output.detach().cpu().numpy() | |
deform_results = np.array( | |
[ | |
[30, 41.25, 48.75, 45, 28.75], | |
[62.25, 81, 90, 80.25, 50.25], | |
[99.75, 126, 135, 117.75, 72.75], | |
[105, 131.25, 138.75, 120, 73.75], | |
[71.75, 89.25, 93.75, 80.75, 49.5], | |
] | |
) | |
self.assertTrue(np.allclose(output.flatten(), deform_results.flatten())) | |
# Test DCN v2 | |
mask_channels = kernel_size * kernel_size | |
mask = torch.full((N, mask_channels, H, W), 0.5, dtype=torch.float32).to(device) | |
modulate_deform = ModulatedDeformConv(C, C, kernel_size, padding=padding, bias=False).to( | |
device | |
) | |
modulate_deform.weight = deform.weight | |
output = modulate_deform(inputs, offset, mask) | |
output = output.detach().cpu().numpy() | |
self.assertTrue(np.allclose(output.flatten(), deform_results.flatten() * 0.5)) | |
def test_forward_output_on_cpu(self): | |
device = torch.device("cpu") | |
N, C, H, W = shape = 1, 1, 5, 5 | |
kernel_size = 3 | |
padding = 1 | |
inputs = torch.arange(np.prod(shape), dtype=torch.float32).reshape(*shape).to(device) | |
offset_channels = kernel_size * kernel_size * 2 | |
offset = torch.full((N, offset_channels, H, W), 0.5, dtype=torch.float32).to(device) | |
# Test DCN v1 on cpu | |
deform = DeformConv(C, C, kernel_size=kernel_size, padding=padding).to(device) | |
deform.weight = torch.nn.Parameter(torch.ones_like(deform.weight)) | |
output = deform(inputs, offset) | |
output = output.detach().cpu().numpy() | |
deform_results = np.array( | |
[ | |
[30, 41.25, 48.75, 45, 28.75], | |
[62.25, 81, 90, 80.25, 50.25], | |
[99.75, 126, 135, 117.75, 72.75], | |
[105, 131.25, 138.75, 120, 73.75], | |
[71.75, 89.25, 93.75, 80.75, 49.5], | |
] | |
) | |
self.assertTrue(np.allclose(output.flatten(), deform_results.flatten())) | |
def test_forward_output_on_cpu_equals_output_on_gpu(self): | |
N, C, H, W = shape = 2, 4, 10, 10 | |
kernel_size = 3 | |
padding = 1 | |
for groups in [1, 2]: | |
inputs = torch.arange(np.prod(shape), dtype=torch.float32).reshape(*shape) | |
offset_channels = kernel_size * kernel_size * 2 | |
offset = torch.full((N, offset_channels, H, W), 0.5, dtype=torch.float32) | |
deform_gpu = DeformConv( | |
C, C, kernel_size=kernel_size, padding=padding, groups=groups | |
).to("cuda") | |
deform_gpu.weight = torch.nn.Parameter(torch.ones_like(deform_gpu.weight)) | |
output_gpu = deform_gpu(inputs.to("cuda"), offset.to("cuda")).detach().cpu().numpy() | |
deform_cpu = DeformConv( | |
C, C, kernel_size=kernel_size, padding=padding, groups=groups | |
).to("cpu") | |
deform_cpu.weight = torch.nn.Parameter(torch.ones_like(deform_cpu.weight)) | |
output_cpu = deform_cpu(inputs.to("cpu"), offset.to("cpu")).detach().numpy() | |
self.assertTrue(np.allclose(output_gpu.flatten(), output_cpu.flatten())) | |
def test_small_input(self): | |
device = torch.device("cuda") | |
for kernel_size in [3, 5]: | |
padding = kernel_size // 2 | |
N, C, H, W = shape = (1, 1, kernel_size - 1, kernel_size - 1) | |
inputs = torch.rand(shape).to(device) # input size is smaller than kernel size | |
offset_channels = kernel_size * kernel_size * 2 | |
offset = torch.randn((N, offset_channels, H, W), dtype=torch.float32).to(device) | |
deform = DeformConv(C, C, kernel_size=kernel_size, padding=padding).to(device) | |
output = deform(inputs, offset) | |
self.assertTrue(output.shape == inputs.shape) | |
mask_channels = kernel_size * kernel_size | |
mask = torch.ones((N, mask_channels, H, W), dtype=torch.float32).to(device) | |
modulate_deform = ModulatedDeformConv( | |
C, C, kernel_size, padding=padding, bias=False | |
).to(device) | |
output = modulate_deform(inputs, offset, mask) | |
self.assertTrue(output.shape == inputs.shape) | |
def test_raise_exception(self): | |
device = torch.device("cuda") | |
N, C, H, W = shape = 1, 1, 3, 3 | |
kernel_size = 3 | |
padding = 1 | |
inputs = torch.rand(shape, dtype=torch.float32).to(device) | |
offset_channels = kernel_size * kernel_size # This is wrong channels for offset | |
offset = torch.randn((N, offset_channels, H, W), dtype=torch.float32).to(device) | |
deform = DeformConv(C, C, kernel_size=kernel_size, padding=padding).to(device) | |
self.assertRaises(RuntimeError, deform, inputs, offset) | |
offset_channels = kernel_size * kernel_size * 2 | |
offset = torch.randn((N, offset_channels, H, W), dtype=torch.float32).to(device) | |
mask_channels = kernel_size * kernel_size * 2 # This is wrong channels for mask | |
mask = torch.ones((N, mask_channels, H, W), dtype=torch.float32).to(device) | |
modulate_deform = ModulatedDeformConv(C, C, kernel_size, padding=padding, bias=False).to( | |
device | |
) | |
self.assertRaises(RuntimeError, modulate_deform, inputs, offset, mask) | |
def test_repr(self): | |
module = DeformConv(3, 10, kernel_size=3, padding=1, deformable_groups=2) | |
correct_string = ( | |
"DeformConv(in_channels=3, out_channels=10, kernel_size=(3, 3), " | |
"stride=(1, 1), padding=(1, 1), dilation=(1, 1), " | |
"groups=1, deformable_groups=2, bias=False)" | |
) | |
self.assertEqual(repr(module), correct_string) | |
module = ModulatedDeformConv(3, 10, kernel_size=3, padding=1, deformable_groups=2) | |
correct_string = ( | |
"ModulatedDeformConv(in_channels=3, out_channels=10, kernel_size=(3, 3), " | |
"stride=1, padding=1, dilation=1, groups=1, deformable_groups=2, bias=True)" | |
) | |
self.assertEqual(repr(module), correct_string) | |
if __name__ == "__main__": | |
unittest.main() | |