snicolau's picture
Upload 772 files
500565b verified
|
raw
history blame
4.65 kB
# Use Builtin Datasets
A dataset can be used by accessing [DatasetCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.DatasetCatalog)
for its data, or [MetadataCatalog](https://detectron2.readthedocs.io/modules/data.html#detectron2.data.MetadataCatalog) for its metadata (class names, etc).
This document explains how to setup the builtin datasets so they can be used by the above APIs.
[Use Custom Datasets](https://detectron2.readthedocs.io/tutorials/datasets.html) gives a deeper dive on how to use `DatasetCatalog` and `MetadataCatalog`,
and how to add new datasets to them.
Detectron2 has builtin support for a few datasets.
The datasets are assumed to exist in a directory specified by the environment variable
`DETECTRON2_DATASETS`.
Under this directory, detectron2 will look for datasets in the structure described below, if needed.
```
$DETECTRON2_DATASETS/
coco/
lvis/
cityscapes/
VOC20{07,12}/
```
You can set the location for builtin datasets by `export DETECTRON2_DATASETS=/path/to/datasets`.
If left unset, the default is `./datasets` relative to your current working directory.
The [model zoo](https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md)
contains configs and models that use these builtin datasets.
## Expected dataset structure for [COCO instance/keypoint detection](https://cocodataset.org/#download):
```
coco/
annotations/
instances_{train,val}2017.json
person_keypoints_{train,val}2017.json
{train,val}2017/
# image files that are mentioned in the corresponding json
```
You can use the 2014 version of the dataset as well.
Some of the builtin tests (`dev/run_*_tests.sh`) uses a tiny version of the COCO dataset,
which you can download with `./datasets/prepare_for_tests.sh`.
## Expected dataset structure for PanopticFPN:
Extract panoptic annotations from [COCO website](https://cocodataset.org/#download)
into the following structure:
```
coco/
annotations/
panoptic_{train,val}2017.json
panoptic_{train,val}2017/ # png annotations
panoptic_stuff_{train,val}2017/ # generated by the script mentioned below
```
Install panopticapi by:
```
pip install git+https://github.com/cocodataset/panopticapi.git
```
Then, run `python datasets/prepare_panoptic_fpn.py`, to extract semantic annotations from panoptic annotations.
## Expected dataset structure for [LVIS instance segmentation](https://www.lvisdataset.org/dataset):
```
coco/
{train,val,test}2017/
lvis/
lvis_v0.5_{train,val}.json
lvis_v0.5_image_info_test.json
lvis_v1_{train,val}.json
lvis_v1_image_info_test{,_challenge}.json
```
Install lvis-api by:
```
pip install git+https://github.com/lvis-dataset/lvis-api.git
```
To evaluate models trained on the COCO dataset using LVIS annotations,
run `python datasets/prepare_cocofied_lvis.py` to prepare "cocofied" LVIS annotations.
## Expected dataset structure for [cityscapes](https://www.cityscapes-dataset.com/downloads/):
```
cityscapes/
gtFine/
train/
aachen/
color.png, instanceIds.png, labelIds.png, polygons.json,
labelTrainIds.png
...
val/
test/
# below are generated Cityscapes panoptic annotation
cityscapes_panoptic_train.json
cityscapes_panoptic_train/
cityscapes_panoptic_val.json
cityscapes_panoptic_val/
cityscapes_panoptic_test.json
cityscapes_panoptic_test/
leftImg8bit/
train/
val/
test/
```
Install cityscapes scripts by:
```
pip install git+https://github.com/mcordts/cityscapesScripts.git
```
Note: to create labelTrainIds.png, first prepare the above structure, then run cityscapesescript with:
```
CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesscripts/preparation/createTrainIdLabelImgs.py
```
These files are not needed for instance segmentation.
Note: to generate Cityscapes panoptic dataset, run cityscapesescript with:
```
CITYSCAPES_DATASET=/path/to/abovementioned/cityscapes python cityscapesscripts/preparation/createPanopticImgs.py
```
These files are not needed for semantic and instance segmentation.
## Expected dataset structure for [Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/index.html):
```
VOC20{07,12}/
Annotations/
ImageSets/
Main/
trainval.txt
test.txt
# train.txt or val.txt, if you use these splits
JPEGImages/
```
## Expected dataset structure for [ADE20k Scene Parsing](http://sceneparsing.csail.mit.edu/):
```
ADEChallengeData2016/
annotations/
annotations_detectron2/
images/
objectInfo150.txt
```
The directory `annotations_detectron2` is generated by running `python datasets/prepare_ade20k_sem_seg.py`.