snyamson's picture
Update app.py
49a31b4
raw
history blame
1.73 kB
import streamlit as st
import torchaudio
from transformers import WhisperProcessor, WhisperForConditionalGeneration
# Load the Whisper model and processor
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en")
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
# Sidebar for file upload
st.sidebar.title("Upload your audio file")
uploaded_file = st.sidebar.file_uploader("Choose an audio file", type=["mp3", "wav", "mp4"])
if uploaded_file:
st.sidebar.audio(uploaded_file)
# Process the uploaded file
audio_tensor, sampling_rate = torchaudio.load(uploaded_file)
resampler = torchaudio.transforms.Resample(sampling_rate, 16000)
resampled_waveform = resampler(audio_tensor)
segment_duration = 120 # Segment duration in seconds (2 minutes)
num_segments = len(resampled_waveform[0]) // (segment_duration * 16000)
segment_transcriptions = []
# Transcribe each segment
for i in range(num_segments):
start = i * segment_duration * 16000
end = min(len(resampled_waveform[0]), (i + 1) * segment_duration * 16000)
segment = resampled_waveform[0][start:end]
# Transcribe the segment
input_features = processor(
segment, sampling_rate=16000, return_tensors="pt"
).input_features
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
segment_transcriptions.append(transcription[0])
# Combine segment transcriptions into the full transcript
full_transcript = " ".join(segment_transcriptions)
# Display the transcript
st.header("Transcription")
st.write(full_transcript)