File size: 1,612 Bytes
9d990ac 5f32ce4 6c098bc 5f32ce4 6c098bc 5f32ce4 6c098bc 5f32ce4 6c098bc 5f32ce4 6c098bc 5f32ce4 306e397 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
from fastapi.middleware.cors import CORSMiddleware
app = FastAPI()
# CORSの設定
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # すべてのオリジンを許可(必要に応じて制限を設定)
allow_credentials=True,
allow_methods=["*"], # すべてのHTTPメソッドを許可
allow_headers=["*"], # すべてのヘッダーを許可
)
from fastapi import FastAPI, Query
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
app = FastAPI()
# モデルとトークナイザーのロード
def load_prompter():
prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
return prompter_model, tokenizer
prompter_model, prompter_tokenizer = load_prompter()
@app.get("/generate")
async def generate(text: str = Query(..., description="Input text to be processed by the model")):
input_ids = prompter_tokenizer(text.strip() + " Rephrase:", return_tensors="pt").input_ids
eos_id = prompter_tokenizer.eos_token_id
outputs = prompter_model.generate(input_ids, do_sample=False, max_new_tokens=75, num_beams=8, num_return_sequences=1, eos_token_id=eos_id, pad_token_id=eos_id, length_penalty=-1.0)
output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True)
res = output_texts[0].replace(text + " Rephrase:", "").strip()
return {"result": res}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|