Spaces:
Running
Running
import torch | |
import numpy as np | |
from torch.nn.utils import remove_weight_norm | |
from torch.nn.utils.parametrizations import weight_norm | |
from typing import Optional | |
from rvc.lib.algorithm.residuals import LRELU_SLOPE, ResBlock | |
from rvc.lib.algorithm.commons import init_weights | |
class HiFiGANGenerator(torch.nn.Module): | |
""" | |
HiFi-GAN Generator module for audio synthesis. | |
This module implements the generator part of the HiFi-GAN architecture, | |
which uses transposed convolutions for upsampling and residual blocks for | |
refining the audio output. It can also incorporate global conditioning. | |
Args: | |
initial_channel (int): Number of input channels to the initial convolutional layer. | |
resblock_kernel_sizes (list): List of kernel sizes for the residual blocks. | |
resblock_dilation_sizes (list): List of lists of dilation rates for the residual blocks, corresponding to each kernel size. | |
upsample_rates (list): List of upsampling factors for each upsampling layer. | |
upsample_initial_channel (int): Number of output channels from the initial convolutional layer, which is also the input to the first upsampling layer. | |
upsample_kernel_sizes (list): List of kernel sizes for the transposed convolutional layers used for upsampling. | |
gin_channels (int, optional): Number of input channels for the global conditioning. If 0, no global conditioning is used. Defaults to 0. | |
""" | |
def __init__( | |
self, | |
initial_channel: int, | |
resblock_kernel_sizes: list, | |
resblock_dilation_sizes: list, | |
upsample_rates: list, | |
upsample_initial_channel: int, | |
upsample_kernel_sizes: list, | |
gin_channels: int = 0, | |
): | |
super(HiFiGANGenerator, self).__init__() | |
self.num_kernels = len(resblock_kernel_sizes) | |
self.num_upsamples = len(upsample_rates) | |
self.conv_pre = torch.nn.Conv1d( | |
initial_channel, upsample_initial_channel, 7, 1, padding=3 | |
) | |
self.ups = torch.nn.ModuleList() | |
self.resblocks = torch.nn.ModuleList() | |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
self.ups.append( | |
weight_norm( | |
torch.nn.ConvTranspose1d( | |
upsample_initial_channel // (2**i), | |
upsample_initial_channel // (2 ** (i + 1)), | |
k, | |
u, | |
padding=(k - u) // 2, | |
) | |
) | |
) | |
ch = upsample_initial_channel // (2 ** (i + 1)) | |
for j, (k, d) in enumerate( | |
zip(resblock_kernel_sizes, resblock_dilation_sizes) | |
): | |
self.resblocks.append(ResBlock(ch, k, d)) | |
self.conv_post = torch.nn.Conv1d(ch, 1, 7, 1, padding=3, bias=False) | |
self.ups.apply(init_weights) | |
if gin_channels != 0: | |
self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1) | |
def forward(self, x: torch.Tensor, g: Optional[torch.Tensor] = None): | |
# new tensor | |
x = self.conv_pre(x) | |
if g is not None: | |
# in-place call | |
x += self.cond(g) | |
for i in range(self.num_upsamples): | |
# in-place call | |
x = torch.nn.functional.leaky_relu_(x, LRELU_SLOPE) | |
x = self.ups[i](x) | |
xs = None | |
for j in range(self.num_kernels): | |
if xs is None: | |
xs = self.resblocks[i * self.num_kernels + j](x) | |
else: | |
xs += self.resblocks[i * self.num_kernels + j](x) | |
x = xs / self.num_kernels | |
# in-place call | |
x = torch.nn.functional.leaky_relu_(x) | |
x = self.conv_post(x) | |
# in-place call | |
x = torch.tanh_(x) | |
return x | |
def __prepare_scriptable__(self): | |
for l in self.ups_and_resblocks: | |
for hook in l._forward_pre_hooks.values(): | |
if ( | |
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm" | |
and hook.__class__.__name__ == "WeightNorm" | |
): | |
torch.nn.utils.remove_weight_norm(l) | |
return self | |
def remove_weight_norm(self): | |
for l in self.ups: | |
remove_weight_norm(l) | |
for l in self.resblocks: | |
l.remove_weight_norm() | |
class SineGenerator(torch.nn.Module): | |
""" | |
Sine wave generator with optional harmonic overtones and noise. | |
This module generates sine waves for a fundamental frequency and its harmonics. | |
It can also add Gaussian noise and apply a voiced/unvoiced mask. | |
Args: | |
sampling_rate (int): The sampling rate of the audio in Hz. | |
num_harmonics (int, optional): The number of harmonic overtones to generate. Defaults to 0. | |
sine_amplitude (float, optional): The amplitude of the sine wave components. Defaults to 0.1. | |
noise_stddev (float, optional): The standard deviation of the additive Gaussian noise. Defaults to 0.003. | |
voiced_threshold (float, optional): The threshold for the fundamental frequency (F0) to determine if a frame is voiced. Defaults to 0.0. | |
""" | |
def __init__( | |
self, | |
sampling_rate: int, | |
num_harmonics: int = 0, | |
sine_amplitude: float = 0.1, | |
noise_stddev: float = 0.003, | |
voiced_threshold: float = 0.0, | |
): | |
super(SineGenerator, self).__init__() | |
self.sampling_rate = sampling_rate | |
self.num_harmonics = num_harmonics | |
self.sine_amplitude = sine_amplitude | |
self.noise_stddev = noise_stddev | |
self.voiced_threshold = voiced_threshold | |
self.waveform_dim = self.num_harmonics + 1 # fundamental + harmonics | |
def _compute_voiced_unvoiced(self, f0: torch.Tensor): | |
""" | |
Generates a binary mask indicating voiced/unvoiced frames based on the fundamental frequency. | |
Args: | |
f0 (torch.Tensor): Fundamental frequency tensor of shape (batch_size, length). | |
""" | |
uv_mask = (f0 > self.voiced_threshold).float() | |
return uv_mask | |
def _generate_sine_wave(self, f0: torch.Tensor, upsampling_factor: int): | |
""" | |
Generates sine waves for the fundamental frequency and its harmonics. | |
Args: | |
f0 (torch.Tensor): Fundamental frequency tensor of shape (batch_size, length, 1). | |
upsampling_factor (int): The factor by which to upsample the sine wave. | |
""" | |
batch_size, length, _ = f0.shape | |
# Create an upsampling grid | |
upsampling_grid = torch.arange( | |
1, upsampling_factor + 1, dtype=f0.dtype, device=f0.device | |
) | |
# Calculate phase increments | |
phase_increments = (f0 / self.sampling_rate) * upsampling_grid | |
phase_remainder = torch.fmod(phase_increments[:, :-1, -1:] + 0.5, 1.0) - 0.5 | |
cumulative_phase = phase_remainder.cumsum(dim=1).fmod(1.0).to(f0.dtype) | |
phase_increments += torch.nn.functional.pad( | |
cumulative_phase, (0, 0, 1, 0), mode="constant" | |
) | |
# Reshape to match the sine wave shape | |
phase_increments = phase_increments.reshape(batch_size, -1, 1) | |
# Scale for harmonics | |
harmonic_scale = torch.arange( | |
1, self.waveform_dim + 1, dtype=f0.dtype, device=f0.device | |
).reshape(1, 1, -1) | |
phase_increments *= harmonic_scale | |
# Add random phase offset (except for the fundamental) | |
random_phase = torch.rand(1, 1, self.waveform_dim, device=f0.device) | |
random_phase[..., 0] = 0 # Fundamental frequency has no random offset | |
phase_increments += random_phase | |
# Generate sine waves | |
sine_waves = torch.sin(2 * np.pi * phase_increments) | |
return sine_waves | |
def forward(self, f0: torch.Tensor, upsampling_factor: int): | |
with torch.no_grad(): | |
# Expand `f0` to include waveform dimensions | |
f0 = f0.unsqueeze(-1) | |
# Generate sine waves | |
sine_waves = ( | |
self._generate_sine_wave(f0, upsampling_factor) * self.sine_amplitude | |
) | |
# Compute voiced/unvoiced mask | |
voiced_mask = self._compute_voiced_unvoiced(f0) | |
# Upsample voiced/unvoiced mask | |
voiced_mask = torch.nn.functional.interpolate( | |
voiced_mask.transpose(2, 1), | |
scale_factor=float(upsampling_factor), | |
mode="nearest", | |
).transpose(2, 1) | |
# Compute noise amplitude | |
noise_amplitude = voiced_mask * self.noise_stddev + (1 - voiced_mask) * ( | |
self.sine_amplitude / 3 | |
) | |
# Add Gaussian noise | |
noise = noise_amplitude * torch.randn_like(sine_waves) | |
# Combine sine waves and noise | |
sine_waveforms = sine_waves * voiced_mask + noise | |
return sine_waveforms, voiced_mask, noise | |