soiz1's picture
Upload 204 files
2f5f13b verified
import torch
from itertools import chain
from typing import Optional, Tuple
from torch.nn.utils import remove_weight_norm
from torch.nn.utils.parametrizations import weight_norm
from rvc.lib.algorithm.modules import WaveNet
from rvc.lib.algorithm.commons import get_padding, init_weights
LRELU_SLOPE = 0.1
def create_conv1d_layer(channels, kernel_size, dilation):
return weight_norm(
torch.nn.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation,
padding=get_padding(kernel_size, dilation),
)
)
def apply_mask(tensor: torch.Tensor, mask: Optional[torch.Tensor]):
return tensor * mask if mask else tensor
def apply_mask_(tensor: torch.Tensor, mask: Optional[torch.Tensor]):
return tensor.mul_(mask) if mask else tensor
class ResBlock(torch.nn.Module):
"""
A residual block module that applies a series of 1D convolutional layers with residual connections.
"""
def __init__(
self, channels: int, kernel_size: int = 3, dilations: Tuple[int] = (1, 3, 5)
):
"""
Initializes the ResBlock.
Args:
channels (int): Number of input and output channels for the convolution layers.
kernel_size (int): Size of the convolution kernel. Defaults to 3.
dilations (Tuple[int]): Tuple of dilation rates for the convolution layers in the first set.
"""
super().__init__()
# Create convolutional layers with specified dilations and initialize weights
self.convs1 = self._create_convs(channels, kernel_size, dilations)
self.convs2 = self._create_convs(channels, kernel_size, [1] * len(dilations))
@staticmethod
def _create_convs(channels: int, kernel_size: int, dilations: Tuple[int]):
"""
Creates a list of 1D convolutional layers with specified dilations.
Args:
channels (int): Number of input and output channels for the convolution layers.
kernel_size (int): Size of the convolution kernel.
dilations (Tuple[int]): Tuple of dilation rates for each convolution layer.
"""
layers = torch.nn.ModuleList(
[create_conv1d_layer(channels, kernel_size, d) for d in dilations]
)
layers.apply(init_weights)
return layers
def forward(self, x: torch.Tensor, x_mask: torch.Tensor = None):
for conv1, conv2 in zip(self.convs1, self.convs2):
x_residual = x
# new tensor
x = torch.nn.functional.leaky_relu(x, LRELU_SLOPE)
# in-place call
x = apply_mask_(x, x_mask)
# in-place call
x = torch.nn.functional.leaky_relu_(conv1(x), LRELU_SLOPE)
# in-place call
x = apply_mask_(x, x_mask)
x = conv2(x)
# in-place call
x += x_residual
# in-place call
return apply_mask_(x, x_mask)
def remove_weight_norm(self):
for conv in chain(self.convs1, self.convs2):
remove_weight_norm(conv)
class Flip(torch.nn.Module):
"""
Flip module for flow-based models.
This module flips the input along the time dimension.
"""
def forward(self, x, *args, reverse=False, **kwargs):
x = torch.flip(x, [1])
if not reverse:
logdet = torch.zeros(x.size(0), dtype=x.dtype, device=x.device)
return x, logdet
else:
return x
class ResidualCouplingBlock(torch.nn.Module):
"""
Residual Coupling Block for normalizing flow.
Args:
channels (int): Number of channels in the input.
hidden_channels (int): Number of hidden channels in the coupling layer.
kernel_size (int): Kernel size of the convolutional layers.
dilation_rate (int): Dilation rate of the convolutional layers.
n_layers (int): Number of layers in the coupling layer.
n_flows (int, optional): Number of coupling layers in the block. Defaults to 4.
gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0.
"""
def __init__(
self,
channels: int,
hidden_channels: int,
kernel_size: int,
dilation_rate: int,
n_layers: int,
n_flows: int = 4,
gin_channels: int = 0,
):
super(ResidualCouplingBlock, self).__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.n_flows = n_flows
self.gin_channels = gin_channels
self.flows = torch.nn.ModuleList()
for _ in range(n_flows):
self.flows.append(
ResidualCouplingLayer(
channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=gin_channels,
mean_only=True,
)
)
self.flows.append(Flip())
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
g: Optional[torch.Tensor] = None,
reverse: bool = False,
):
if not reverse:
for flow in self.flows:
x, _ = flow(x, x_mask, g=g, reverse=reverse)
else:
for flow in reversed(self.flows):
x = flow.forward(x, x_mask, g=g, reverse=reverse)
return x
def remove_weight_norm(self):
for i in range(self.n_flows):
self.flows[i * 2].remove_weight_norm()
def __prepare_scriptable__(self):
for i in range(self.n_flows):
for hook in self.flows[i * 2]._forward_pre_hooks.values():
if (
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
and hook.__class__.__name__ == "WeightNorm"
):
torch.nn.utils.remove_weight_norm(self.flows[i * 2])
return self
class ResidualCouplingLayer(torch.nn.Module):
"""
Residual coupling layer for flow-based models.
Args:
channels (int): Number of channels.
hidden_channels (int): Number of hidden channels.
kernel_size (int): Size of the convolutional kernel.
dilation_rate (int): Dilation rate of the convolution.
n_layers (int): Number of convolutional layers.
p_dropout (float, optional): Dropout probability. Defaults to 0.
gin_channels (int, optional): Number of conditioning channels. Defaults to 0.
mean_only (bool, optional): Whether to use mean-only coupling. Defaults to False.
"""
def __init__(
self,
channels: int,
hidden_channels: int,
kernel_size: int,
dilation_rate: int,
n_layers: int,
p_dropout: float = 0,
gin_channels: int = 0,
mean_only: bool = False,
):
assert channels % 2 == 0, "channels should be divisible by 2"
super().__init__()
self.channels = channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.half_channels = channels // 2
self.mean_only = mean_only
self.pre = torch.nn.Conv1d(self.half_channels, hidden_channels, 1)
self.enc = WaveNet(
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
p_dropout=p_dropout,
gin_channels=gin_channels,
)
self.post = torch.nn.Conv1d(
hidden_channels, self.half_channels * (2 - mean_only), 1
)
self.post.weight.data.zero_()
self.post.bias.data.zero_()
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
g: Optional[torch.Tensor] = None,
reverse: bool = False,
):
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
h = self.pre(x0) * x_mask
h = self.enc(h, x_mask, g=g)
stats = self.post(h) * x_mask
if not self.mean_only:
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
else:
m = stats
logs = torch.zeros_like(m)
if not reverse:
x1 = m + x1 * torch.exp(logs) * x_mask
x = torch.cat([x0, x1], 1)
logdet = torch.sum(logs, [1, 2])
return x, logdet
else:
x1 = (x1 - m) * torch.exp(-logs) * x_mask
x = torch.cat([x0, x1], 1)
return x
def remove_weight_norm(self):
self.enc.remove_weight_norm()