Spaces:
Running
Running
import torch | |
import torch.utils.data | |
from librosa.filters import mel as librosa_mel_fn | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
""" | |
Dynamic range compression using log10. | |
Args: | |
x (torch.Tensor): Input tensor. | |
C (float, optional): Scaling factor. Defaults to 1. | |
clip_val (float, optional): Minimum value for clamping. Defaults to 1e-5. | |
""" | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression_torch(x, C=1): | |
""" | |
Dynamic range decompression using exp. | |
Args: | |
x (torch.Tensor): Input tensor. | |
C (float, optional): Scaling factor. Defaults to 1. | |
""" | |
return torch.exp(x) / C | |
def spectral_normalize_torch(magnitudes): | |
""" | |
Spectral normalization using dynamic range compression. | |
Args: | |
magnitudes (torch.Tensor): Magnitude spectrogram. | |
""" | |
return dynamic_range_compression_torch(magnitudes) | |
def spectral_de_normalize_torch(magnitudes): | |
""" | |
Spectral de-normalization using dynamic range decompression. | |
Args: | |
magnitudes (torch.Tensor): Normalized spectrogram. | |
""" | |
return dynamic_range_decompression_torch(magnitudes) | |
mel_basis = {} | |
hann_window = {} | |
def spectrogram_torch(y, n_fft, hop_size, win_size, center=False): | |
""" | |
Compute the spectrogram of a signal using STFT. | |
Args: | |
y (torch.Tensor): Input signal. | |
n_fft (int): FFT window size. | |
hop_size (int): Hop size between frames. | |
win_size (int): Window size. | |
center (bool, optional): Whether to center the window. Defaults to False. | |
""" | |
global hann_window | |
dtype_device = str(y.dtype) + "_" + str(y.device) | |
wnsize_dtype_device = str(win_size) + "_" + dtype_device | |
if wnsize_dtype_device not in hann_window: | |
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to( | |
dtype=y.dtype, device=y.device | |
) | |
y = torch.nn.functional.pad( | |
y.unsqueeze(1), | |
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), | |
mode="reflect", | |
) | |
y = y.squeeze(1) | |
spec = torch.stft( | |
y, | |
n_fft=n_fft, | |
hop_length=hop_size, | |
win_length=win_size, | |
window=hann_window[wnsize_dtype_device], | |
center=center, | |
pad_mode="reflect", | |
normalized=False, | |
onesided=True, | |
return_complex=True, | |
) | |
spec = torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-6) | |
return spec | |
def spec_to_mel_torch(spec, n_fft, num_mels, sample_rate, fmin, fmax): | |
""" | |
Convert a spectrogram to a mel-spectrogram. | |
Args: | |
spec (torch.Tensor): Magnitude spectrogram. | |
n_fft (int): FFT window size. | |
num_mels (int): Number of mel frequency bins. | |
sample_rate (int): Sampling rate of the audio signal. | |
fmin (float): Minimum frequency. | |
fmax (float): Maximum frequency. | |
""" | |
global mel_basis | |
dtype_device = str(spec.dtype) + "_" + str(spec.device) | |
fmax_dtype_device = str(fmax) + "_" + dtype_device | |
if fmax_dtype_device not in mel_basis: | |
mel = librosa_mel_fn( | |
sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax | |
) | |
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to( | |
dtype=spec.dtype, device=spec.device | |
) | |
melspec = torch.matmul(mel_basis[fmax_dtype_device], spec) | |
melspec = spectral_normalize_torch(melspec) | |
return melspec | |
def mel_spectrogram_torch( | |
y, n_fft, num_mels, sample_rate, hop_size, win_size, fmin, fmax, center=False | |
): | |
""" | |
Compute the mel-spectrogram of a signal. | |
Args: | |
y (torch.Tensor): Input signal. | |
n_fft (int): FFT window size. | |
num_mels (int): Number of mel frequency bins. | |
sample_rate (int): Sampling rate of the audio signal. | |
hop_size (int): Hop size between frames. | |
win_size (int): Window size. | |
fmin (float): Minimum frequency. | |
fmax (float): Maximum frequency. | |
center (bool, optional): Whether to center the window. Defaults to False. | |
""" | |
spec = spectrogram_torch(y, n_fft, hop_size, win_size, center) | |
melspec = spec_to_mel_torch(spec, n_fft, num_mels, sample_rate, fmin, fmax) | |
return melspec | |
def compute_window_length(n_mels: int, sample_rate: int): | |
f_min = 0 | |
f_max = sample_rate / 2 | |
window_length_seconds = 8 * n_mels / (f_max - f_min) | |
window_length = int(window_length_seconds * sample_rate) | |
return 2 ** (window_length.bit_length() - 1) | |
class MultiScaleMelSpectrogramLoss(torch.nn.Module): | |
def __init__( | |
self, | |
sample_rate: int = 24000, | |
n_mels: list[int] = [5, 10, 20, 40, 80, 160, 320, 480], | |
loss_fn=torch.nn.L1Loss(), | |
): | |
super().__init__() | |
self.sample_rate = sample_rate | |
self.loss_fn = loss_fn | |
self.log_base = torch.log(torch.tensor(10.0)) | |
self.stft_params: list[tuple] = [] | |
self.hann_window: dict[int, torch.Tensor] = {} | |
self.mel_banks: dict[int, torch.Tensor] = {} | |
self.stft_params = [ | |
(mel, compute_window_length(mel, sample_rate), self.sample_rate // 100) | |
for mel in n_mels | |
] | |
def mel_spectrogram( | |
self, | |
wav: torch.Tensor, | |
n_mels: int, | |
window_length: int, | |
hop_length: int, | |
): | |
# IDs for caching | |
dtype_device = str(wav.dtype) + "_" + str(wav.device) | |
win_dtype_device = str(window_length) + "_" + dtype_device | |
mel_dtype_device = str(n_mels) + "_" + dtype_device | |
# caching hann window | |
if win_dtype_device not in self.hann_window: | |
self.hann_window[win_dtype_device] = torch.hann_window( | |
window_length, device=wav.device, dtype=torch.float32 | |
) | |
wav = wav.squeeze(1) # -> torch(B, T) | |
stft = torch.stft( | |
wav.float(), | |
n_fft=window_length, | |
hop_length=hop_length, | |
window=self.hann_window[win_dtype_device], | |
return_complex=True, | |
) # -> torch (B, window_length // 2 + 1, (T - window_length)/hop_length + 1) | |
magnitude = torch.sqrt(stft.real.pow(2) + stft.imag.pow(2) + 1e-6) | |
# caching mel filter | |
if mel_dtype_device not in self.mel_banks: | |
self.mel_banks[mel_dtype_device] = torch.from_numpy( | |
librosa_mel_fn( | |
sr=self.sample_rate, | |
n_mels=n_mels, | |
n_fft=window_length, | |
fmin=0, | |
fmax=None, | |
) | |
).to(device=wav.device, dtype=torch.float32) | |
mel_spectrogram = torch.matmul( | |
self.mel_banks[mel_dtype_device], magnitude | |
) # torch(B, n_mels, stft.frames) | |
return mel_spectrogram | |
def forward( | |
self, real: torch.Tensor, fake: torch.Tensor | |
): # real: torch(B, 1, T) , fake: torch(B, 1, T) | |
loss = 0.0 | |
for p in self.stft_params: | |
real_mels = self.mel_spectrogram(real, *p) | |
fake_mels = self.mel_spectrogram(fake, *p) | |
real_logmels = torch.log(real_mels.clamp(min=1e-5)) / self.log_base | |
fake_logmels = torch.log(fake_mels.clamp(min=1e-5)) / self.log_base | |
loss += self.loss_fn(real_logmels, fake_logmels) | |
return loss | |