Spaces:
Runtime error
Runtime error
File size: 10,176 Bytes
47d82ab 6ce5a5b c5a914e 5537833 47d82ab c5a914e 47d82ab c5a914e 5537833 b9ceebf 47d82ab 5537833 6ce5a5b 941bfc4 0bcdbb7 6ce5a5b c5a914e 5f0ab2a 6ce5a5b 8c77fdd 6ce5a5b 5355c89 6ce5a5b 5f0ab2a 6ce5a5b 5f0ab2a 6ce5a5b c9916d8 6ce5a5b 8c77fdd 6ce5a5b 5355c89 6382446 6ce5a5b 428a5aa 92bb964 8c77fdd 5537833 92bb964 428a5aa 0bcdbb7 5537833 428a5aa 5537833 6ce5a5b 8c77fdd 6ce5a5b c5a914e 8c77fdd c5a914e 8c77fdd c5a914e 8c77fdd c5a914e 5537833 6ce5a5b 5537833 47d82ab 95b13f9 47d82ab 5537833 af90128 5537833 6ce5a5b 8c77fdd 6ce5a5b a8843ce 6ce5a5b a035375 6ce5a5b a035375 941bfc4 8c77fdd 6ce5a5b 5355c89 6ce5a5b 5355c89 6ce5a5b 5355c89 6ce5a5b c5a914e 6ce5a5b a035375 5537833 5bf8ab4 5537833 c5a914e 6ce5a5b 065161d c5a914e 2a13080 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import os
import random
import requests
import torch
from bs4 import BeautifulSoup
from datasets import Dataset
from langchain.docstore.document import Document
from langchain.llms import HuggingFacePipeline
from langchain.text_splitter import CharacterTextSplitter
from peft import PeftConfig, PeftModel
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
GenerationConfig, pipeline)
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
generation_config = GenerationConfig(temperature=.8,
top_p=0.75,
top_k=40)
device = 'cuda'
shared = {
'answer_context': None,
'embeddings_dataset': None,
'full_text': None,
}
text_splitter = CharacterTextSplitter()
def get_nearest_examples(question: str, k: int):
"""
Returns the k nearest examples to a given question.
Args:
question (str): The input question to find nearest examples for.
k (int): The number of nearest examples to retrieve.
Returns:
The k nearest examples to the given question.
"""
print(['get_nearest_examples', 'start'])
question_embedding = get_embeddings([question]).cpu().detach().numpy()
embeddings_dataset = shared['embeddings_dataset']
scores, samples = embeddings_dataset.get_nearest_examples(
"embeddings", question_embedding, k)
print(['get_nearest_examples', 'scores and samples'])
print(scores)
print(samples['id'])
print(['get_nearest_examples', 'end'])
return samples
def get_embeddings(text):
print(['get_embeddings', 'start'])
encoded_input = emb_tokenizer(text,
padding=True,
truncation=True,
return_tensors="pt")
encoded_input = {k: v.to('cuda') for k, v in encoded_input.items()}
model_output = emb_model(**encoded_input)
model_output = model_output.last_hidden_state[:, 0]
print(['get_embeddings', 'end'])
return model_output
def build_faiss_index(text):
"""
Builds a FAISS index for the given text.
Args:
text (str): The input text to build a FAISS index for.
Returns:
None.
"""
print(['build_faiss_index', 'start'])
text_list = split_text(text)
emb_list = []
for i, item in enumerate(text_list):
emb_list.append({
"embeddings": get_embeddings(item).cpu().detach().numpy()[0],
'id': i
})
dataset = Dataset.from_list(emb_list)
dataset.add_faiss_index(column="embeddings")
shared['embeddings_dataset'] = dataset
print(['build_faiss_index', 'end'])
def extract_text(url: str):
"""
Extracts the text content from a given URL and returns it as a string.
Args:
url (str): The URL to extract text content from.
Returns:
str: The text content extracted from the URL, or an empty string if the URL is invalid.
"""
print(['extract_text', 'start'])
if url is None or url.strip() == '':
return ''
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
text = '\n\n'.join(map(lambda p: p.text, soup.find_all('p')))
shared['full_text'] = text
print(['extract_text', 'end'])
return text
def split_text(text: str):
"""
Splits a given text into a list of individual lines.
Args:
text (str): The input text to split into lines.
Returns:
List[str]: A list of individual lines in the input text.
"""
lines = text.split('\n')
lines = [line.strip() for line in lines if line.strip()]
return lines
def remove_prompt(text: str) -> str:
"""
Removes the prompt from a given text and returns the resulting text.
Args:
text (str): The input text to remove the prompt from.
Returns:
str: The input text with the prompt removed, or the original text if the prompt is not found.
"""
output_prompt = 'Output: '
try:
idx = text.index(output_prompt)
res = text[idx + len(output_prompt):].strip()
res = res.replace('Input: ', '')
except ValueError:
res = text
return res
def summarize_text(text: str) -> str:
"""
Generates a summary of the given text using a pre-trained language model.
Args:
text (str): The input text to generate a summary for.
Returns:
str: The generated summary for the input text.
"""
print(['summarize_text', 'start'])
print(['summarize_text', 'splitting text'])
texts = text_splitter.split_text(text)
docs = [Document(page_content=t) for t in texts]
prompts = [f'<s>Instruction: Elabora un resume del siguiente texto.\nInput: {d.page_content}\nOutput: '
for d in docs]
print(['summarize_text', 'generating'])
cleaned_summaries = [remove_prompt(
s['generated_text']) for s in pipe(prompts)]
summaries = '\n\n'.join(cleaned_summaries)
print(['summarize_text', 'end'])
return summaries
def summarize_text_v1(text: str):
print(['summarize_text', 'start'])
input_text = f'<s>Instruction: Elabora un resume del siguiente texto.\nInput: {text}\nOutput: '
batch = tokenizer(input_text, return_tensors='pt')
batch = batch.to(device)
print(['summarize_text', 'generating'])
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch,
max_new_tokens=512,
generation_config=generation_config
)
output = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
output = output.replace(input_text, '')
print(['summarize_text', 'end'])
return output
def generate_question(text: str):
"""
Generates a question based on a random section of the input text using a pre-trained language model.
Args:
text (str): The input text to generate a question for.
Returns:
str: The generated question for the input text.
"""
print(['generate_question', 'start'])
# Get a random section of the whole text to generate a question
fragments = split_text(text)
rnd_text = random.choice(fragments)
shared['answer_context'] = rnd_text
input_text = f'<s>Instruction: Dado el siguiente texto quiero que generes una pregunta cuya respuesta se encuentre en él.\nInput: {rnd_text}\nOutput: '
batch = tokenizer(input_text, return_tensors='pt')
print(['generate_question', 'generating'])
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch,
max_new_tokens=256,
generation_config=generation_config)
output = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
output = output.replace(input_text, '')
print(['generate_question', 'end'])
return output
def get_answer_context():
return shared['answer_context']
def answer_question(question: str):
"""
Generates an answer to the given question based on a pre-trained language model and a pre-built Faiss index.
Args:
question (str): The question to generate an answer for.
Returns:
str: The generated answer for the question.
"""
print(['answer_question', 'start'])
full_text = shared['full_text']
if not shared['embeddings_dataset']:
build_faiss_index(full_text)
top_k_samples = get_nearest_examples(question, k=3)
index_text = {}
for i, t in enumerate(split_text(full_text)):
index_text[i] = t
context = '\n'.join([index_text[id] for id in top_k_samples['id']])
input_text = f"""<s>Instruction: Te voy a proporcionar un texto del cual deseo que me respondas una pregunta.
El texto es el siguiente: `{context}`\nInput: {question}\nOutput: """
batch = tokenizer(input_text, return_tensors='pt')
print(['answer_question', 'generating'])
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch,
max_new_tokens=256,
generation_config=generation_config)
output = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
output = output.replace(input_text, '')
print(['answer_question', 'end'])
return output
def load_model(peft_model_id):
print(['load_model', 'start'])
config = PeftConfig.from_pretrained(peft_model_id)
print(['load_model', 'loading model'])
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path,
return_dict=True,
load_in_8bit=True,
device_map='auto')
print(['load_model', 'loading tokenizer'])
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(model, peft_model_id)
model.config.use_cache = True
print(['load_model', 'end'])
return model, tokenizer
def load_embeddings_model(model_ckpt: str):
print(['load_embeddings_model', 'start'])
print(['load_embeddings_model', 'loading tokenizer'])
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
print(['load_embeddings_model', 'loading model'])
model = AutoModel.from_pretrained(model_ckpt)
model = model.to(device)
print(['load_embeddings_model', 'end'])
return model, tokenizer
# Models trained with LoRA
# - hackathon-somos-nlp-2023/opt-6.7b-lora-sag-t3000-v300-v2
# - hackathon-somos-nlp-2023/opt-6.7b-lora-sag-t14000-v1400-v1
model, tokenizer = load_model("hackathon-somos-nlp-2023/opt-6.7b-lora-sag-t14000-v1400-v1")
pipe = pipeline("text2text-generation", model=model,
tokenizer=tokenizer, max_new_tokens=100)
llm = HuggingFacePipeline(pipeline=pipe)
# Sentence Transformers models
# - paraphrase-multilingual-MiniLM-L12-v2
# - multi-qa-mpnet-base-dot-v1
emb_model, emb_tokenizer = load_embeddings_model("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|