File size: 6,709 Bytes
53c9ab2 2091088 a5b21b0 bd8ef23 494d2b1 2091088 53c9ab2 2091088 53c9ab2 2091088 53c9ab2 2091088 53c9ab2 2091088 53c9ab2 2091088 53c9ab2 494d2b1 53c9ab2 494d2b1 0d62a80 494d2b1 2091088 53c9ab2 2091088 53c9ab2 2091088 53c9ab2 2091088 53c9ab2 2091088 53c9ab2 494d2b1 53c9ab2 494d2b1 53c9ab2 0d62a80 53c9ab2 2091088 53c9ab2 2091088 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import openai
import gradio as gr
from gradio.components import Audio, Textbox
import os
import re
from transformers import GPT2Tokenizer
import whisper
import pandas as pd
from datetime import datetime, timezone, timedelta
import notion_df
openai.api_key = os.environ["OPENAI_API_KEY"]
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
initial_message = {"role": "system", "content": 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'}
messages = [initial_message]
answer_count = 0
# set up whisper model
model = whisper.load_model("base")
def num_tokens_from_messages(messages, model="gpt-3.5-turbo-0301"):
"""Returns the number of tokens used by a list of messages."""
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
encoding = tiktoken.get_encoding("cl100k_base")
if model == "gpt-3.5-turbo-0301": # note: future models may deviate from this
num_tokens = 0
for message in messages:
num_tokens += 4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name": # if there's a name, the role is omitted
num_tokens += -1 # role is always required and always 1 token
num_tokens += 2 # every reply is primed with <im_start>assistant
return num_tokens
else:
raise NotImplementedError(f"""num_tokens_from_messages() is not presently implemented for model {model}.
See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")
def transcribe(audio, text):
global messages
global answer_count
if audio is not None:
audio_file = open(audio, "rb")
transcript = openai.Audio.transcribe("whisper-1", audio_file, language="en")
messages.append({"role": "user", "content": transcript["text"]})
if text is not None:
# Split the input text into sentences
sentences = re.split("(?<=[.!?]) +", text)
# Tokenize the sentences using the GPT-2 tokenizer
sentence_tokens = [tokenizer.encode(sentence) for sentence in sentences]
# Flatten the list of tokens
input_tokens = [token for sentence in sentence_tokens for token in sentence]
# Check if adding the input tokens would exceed the token limit
num_tokens = num_tokens_from_messages(messages)
if num_tokens + len(input_tokens) > 2200:
# Reset the messages list and answer counter
messages = [initial_message]
answer_count = 0
input_text = 'Can you click the Submit button one more time? (say Yes)'
messages.append({"role": "user", "content": input_text})
else:
# Add the input tokens to the messages list
input_text = tokenizer.decode(input_tokens)
messages.append({"role": "user", "content": input_text})
# Check if the accumulated tokens have exceeded the limit
num_tokens = num_tokens_from_messages(messages)
if num_tokens > 2096:
# Concatenate the chat history
chat_transcript = ""
for message in messages:
if message['role'] != 'system':
chat_transcript += f"[ANSWER {answer_count}]{message['role']}: {message['content']}\n\n"
# Append the number of tokens used to the end of the chat transcript
chat_transcript += f"Number of tokens used: {num_tokens}\n\n"
# Get the current time in Eastern Time (ET)
now_et = datetime.now(timezone(timedelta(hours=-5)))
# Format the time as string (YY-MM-DD HH:MM)
published_date = now_et.strftime('%m-%d-%y %H:%M')
# Upload the chat transcript to Notion
df = pd.DataFrame([chat_transcript])
notion_df.upload(df, 'https://www.notion.so/personal-5e3978680ca848bda844452129955138?pvs=4', title=str(published_date), api_key=API_KEY)
# Reset the messages list and answer counter
messages = [initial_message]
answer_count = 0
# Increment the answer counter
answer_count += 1
# Generate the system message using the OpenAI API
system_message = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=2000
)["choices"][0]["message"]
# Add the system message to the messages list
messages.append({"role": "system", "content": system_message})
# Concatenate the chat history
chat_transcript = ""
for message in messages:
if message['role'] != 'system':
chat_transcript += f"[ANSWER {answer_count}]{message['role']}: {message['content']}\n\n"
# Append the number of tokens used to the end of the chat transcript
num_tokens = num_tokens_from_messages(messages)
chat_transcript += f"Number of tokens used: {num_tokens}\n\n"
# Get the current time in Eastern Time (ET)
now_et = datetime.now(timezone(timedelta(hours=-5)))
# Format the time as string (YY-MM-DD HH:MM)
published_date = now_et.strftime('%m-%d-%y %H:%M')
# Upload the chat transcript to Notion
df = pd.DataFrame([chat_transcript])
notion_df.upload(df, 'https://www.notion.so/personal-5e3978680ca848bda844452129955138?pvs=4', title=str(published_date), api_key=API_KEY)
# Reset the messages list and answer counter if the token limit is exceeded
if num_tokens > 2096:
messages = [initial_message]
answer_count = 0
else:
# Increment the answer counter
answer_count += 1
# Generate the system message using the OpenAI API
system_message = openai.Completion.create(
engine="text-davinci-002",
prompt=[{"text": f"{message['role']}: {message['content']}\n\n"} for message in messages],
temperature=0.7,
max_tokens=2000,
n=1,
stop=None,
)[0]["text"]
# Add the system message to the messages list
messages.append({"role": "system", "content": system_message})
audio_input = Audio(source="microphone", type="filepath", label="Record your message")
text_input = Textbox(label="Type your message", max_length=4096)
output_text = gr.outputs.Textbox(label="Response")
iface = gr.Interface(
fn=transcribe,
inputs=[audio_input, text_input],
outputs="text",
title="YENA",
description="Tutor YENA")
# Launch Gradio interface
iface.launch()
|