US / app.py
son9john's picture
Update app.py
c3ffc00
raw
history blame
6.99 kB
import openai
import gradio as gr
from gradio.components import Audio, Textbox
import os
import re
import tiktoken
from transformers import GPT2Tokenizer
import whisper
import pandas as pd
from datetime import datetime, timezone, timedelta
import notion_df
import concurrent.futures
import nltk
from nltk.tokenize import sent_tokenize
nltk.download('punkt')
# Define the tokenizer and model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = openai.api_key = os.environ["OPENAI_API_KEY"]
# Define the initial message and messages list
initmessage = 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'
initial_message = {"role": "system", "content": 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'}
messages = [initial_message]
messages_rev = [initial_message]
# Define the answer counter
answer_count = 0
# Define the Notion API key
API_KEY = os.environ["API_KEY"]
def transcribe(audio, text):
global messages
global answer_count
messages = [initial_message]
messages_rev = [initial_message]
transcript = {'text': ''}
input_text = []
counter = 0
# Transcribe the audio if provided
if audio is not None:
audio_file = open(audio, "rb")
transcript = openai.Audio.transcribe("whisper-1", audio_file, language="en")
messages.append({"role": "user", "content": transcript["text"]})
system_message = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=2000
)["choices"][0]["message"]
messages.append({"role": "system", "content": str(system_message['content'])})
messages_rev.append({"role": "system", "content": str(system_message['content'])})
# Concatenate the chat history
chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages_rev if message['role'] != 'user'])
# if not isinstance(messages[-1]['content'], str):
# continue
# Append the number of tokens used to the end of the chat transcript
df = pd.DataFrame([chat_transcript])
# Get the current time in Eastern Time (ET)
now_et = datetime.now(timezone(timedelta(hours=-4)))
# Format the time as string (YY-MM-DD HH:MM)
published_date = now_et.strftime('%m-%d-%y %H:%M')
notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date), api_key=API_KEY)
# Split the input text into sentences
sentences = sent_tokenize(text)
# Split the input text into sub-input tokens based on the condition
subinput_tokens = []
buffer = []
for sentence in sentences:
sentence_tokens = tokenizer.encode(sentence)
if len(buffer) + len(sentence_tokens) > 800:
subinput_tokens.append(buffer)
buffer = []
buffer.extend(sentence_tokens)
if buffer:
subinput_tokens.append(buffer)
chat_transcript = ''
for tokens in subinput_tokens:
messages.append[{"role": "user", "content": initmessage}]
# Decode the tokens into text
subinput_text = tokenizer.decode(tokens)
messages.append({"role": "user", "content": transcript["text"]+str(subinput_text)})
num_tokens = sum(len(tokenizer.encode(message["content"])) for message in messages)
if num_tokens > 2096:
# Concatenate the chat history
chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages if message['role'] != 'user'])
# Append the number of tokens used to the end of the chat transcript
chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"
# Get the current time in Eastern Time (ET)
now_et = datetime.now(timezone(timedelta(hours=-4)))
# Format the time as string (YY-MM-DD HH:MM)
published_date = now_et.strftime('%m-%d-%y %H:%M')
if counter > 0:
# Upload the chat transcript to Notion
df = pd.DataFrame([chat_transcript])
notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date+'FULL'), api_key=API_KEY)
counter += 1
messages = [{"role": "system", "content": initmessage}]
messages = [{"role": "user", "content": subinput_text}]
answer_count = 0
# Generate the system message using the OpenAI API
# with concurrent.futures.ThreadPoolExecutor() as executor:
system_message = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=2000
)["choices"][0]["message"]
messages.append({"role": "system", "content": str(system_message['content'])})
messages_rev.append({"role": "system", "content": str(system_message['content'])})
# Concatenate the chat history
chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages_rev if message['role'] != 'user'])
# if not isinstance(messages[-1]['content'], str):
# continue
# Append the number of tokens used to the end of the chat transcript
chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"
df = pd.DataFrame([chat_transcript])
# Get the current time in Eastern Time (ET)
now_et = datetime.now(timezone(timedelta(hours=-4)))
# Format the time as string (YY-MM-DD HH:MM)
published_date = now_et.strftime('%m-%d-%y %H:%M')
notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date), api_key=API_KEY)
# Return the chat transcript
return chat_transcript
# Define the input and output components for Gradio
audio_input = Audio(source="microphone", type="filepath", label="Record your message")
text_input = Textbox(label="Type your message", max_length=4096)
output_text = gr.outputs.Textbox(label="Response")
output_audio = Audio()
# Define the Gradio interface
iface = gr.Interface(
fn=transcribe,
inputs=[audio_input, text_input],
outputs=[output_text],
title="Hold On, Pain Ends (HOPE) 2",
description="Talk to Your Nephrology Tutor HOPE",
theme="compact",
layout="vertical",
allow_flagging=False
)
# Run the Gradio interface
iface.launch()