File size: 6,992 Bytes
53c9ab2
2091088
 
 
 
98cf098
2091088
 
a5b21b0
bd8ef23
494d2b1
98cf098
32ca932
e608162
 
 
494d2b1
98cf098
 
 
2091088
98cf098
c3ffc00
2091088
 
c447195
2091088
98cf098
2091088
 
98cf098
 
2091088
 
 
 
e608162
 
 
c447195
 
 
e608162
98cf098
2091088
 
 
 
1091053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98cf098
e608162
 
98cf098
e608162
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3ffc00
e608162
 
 
 
 
 
 
 
 
 
 
 
32ca932
e608162
 
 
 
 
 
 
c3ffc00
e608162
 
 
 
 
98cf098
 
 
 
 
e608162
 
 
494d2b1
e608162
 
 
 
494d2b1
e608162
 
 
 
32ca932
e608162
 
 
53c9ab2
ac2595c
e608162
98cf098
 
2091088
 
 
98cf098
2091088
98cf098
2091088
 
 
98cf098
a52a911
 
98cf098
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import openai
import gradio as gr
from gradio.components import Audio, Textbox
import os
import re
import tiktoken
from transformers import GPT2Tokenizer
import whisper
import pandas as pd
from datetime import datetime, timezone, timedelta
import notion_df
import concurrent.futures
import nltk
from nltk.tokenize import sent_tokenize
nltk.download('punkt')


# Define the tokenizer and model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = openai.api_key = os.environ["OPENAI_API_KEY"]

# Define the initial message and messages list
initmessage = 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'
initial_message = {"role": "system", "content": 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'}
messages = [initial_message]
messages_rev = [initial_message]

# Define the answer counter
answer_count = 0

# Define the Notion API key
API_KEY = os.environ["API_KEY"]

def transcribe(audio, text):
    global messages
    global answer_count
    messages = [initial_message]
    messages_rev = [initial_message]
    
    transcript = {'text': ''} 
    input_text = []
    
    counter = 0
    # Transcribe the audio if provided
    if audio is not None:
        audio_file = open(audio, "rb")
        transcript = openai.Audio.transcribe("whisper-1", audio_file, language="en")
        messages.append({"role": "user", "content": transcript["text"]})
        system_message = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=messages,
            max_tokens=2000
        )["choices"][0]["message"]
            
        messages.append({"role": "system", "content": str(system_message['content'])})
        messages_rev.append({"role": "system", "content": str(system_message['content'])})
    
        # Concatenate the chat history
        chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages_rev if message['role'] != 'user'])
        # if not isinstance(messages[-1]['content'], str):
        #     continue
    
        # Append the number of tokens used to the end of the chat transcript
        df = pd.DataFrame([chat_transcript])
        # Get the current time in Eastern Time (ET)
        now_et = datetime.now(timezone(timedelta(hours=-4)))
        # Format the time as string (YY-MM-DD HH:MM)
        published_date = now_et.strftime('%m-%d-%y %H:%M')
        notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date), api_key=API_KEY)
    
    
    # Split the input text into sentences
    sentences = sent_tokenize(text)
    
    # Split the input text into sub-input tokens based on the condition
    subinput_tokens = []
    buffer = []
    for sentence in sentences:
        sentence_tokens = tokenizer.encode(sentence)
        if len(buffer) + len(sentence_tokens) > 800:
            subinput_tokens.append(buffer)
            buffer = []
        buffer.extend(sentence_tokens)
    if buffer:
        subinput_tokens.append(buffer)
    
    chat_transcript = ''
    
    for tokens in subinput_tokens:
        messages.append[{"role": "user", "content": initmessage}]
        # Decode the tokens into text
        subinput_text = tokenizer.decode(tokens)
        messages.append({"role": "user", "content": transcript["text"]+str(subinput_text)})

        num_tokens = sum(len(tokenizer.encode(message["content"])) for message in messages)
        if num_tokens > 2096:
            # Concatenate the chat history
            chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages if message['role'] != 'user'])
            # Append the number of tokens used to the end of the chat transcript
            chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"
    
            # Get the current time in Eastern Time (ET)
            now_et = datetime.now(timezone(timedelta(hours=-4)))
            # Format the time as string (YY-MM-DD HH:MM)
            published_date = now_et.strftime('%m-%d-%y %H:%M')
            if counter > 0:
                # Upload the chat transcript to Notion
                df = pd.DataFrame([chat_transcript])
                notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date+'FULL'), api_key=API_KEY)
            counter += 1
            messages = [{"role": "system", "content": initmessage}]
            messages = [{"role": "user", "content": subinput_text}]
            answer_count = 0
            
        # Generate the system message using the OpenAI API
        # with concurrent.futures.ThreadPoolExecutor() as executor:
        system_message = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",
            messages=messages,
            max_tokens=2000
        )["choices"][0]["message"]
            
        messages.append({"role": "system", "content": str(system_message['content'])})
        messages_rev.append({"role": "system", "content": str(system_message['content'])})
    
        # Concatenate the chat history
        chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages_rev if message['role'] != 'user'])
        # if not isinstance(messages[-1]['content'], str):
        #     continue
    
        # Append the number of tokens used to the end of the chat transcript
        chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"
        df = pd.DataFrame([chat_transcript])
        # Get the current time in Eastern Time (ET)
        now_et = datetime.now(timezone(timedelta(hours=-4)))
        # Format the time as string (YY-MM-DD HH:MM)
        published_date = now_et.strftime('%m-%d-%y %H:%M')
        notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date), api_key=API_KEY)
    
    # Return the chat transcript
    return chat_transcript
    
# Define the input and output components for Gradio
audio_input = Audio(source="microphone", type="filepath", label="Record your message")
text_input = Textbox(label="Type your message", max_length=4096)
output_text = gr.outputs.Textbox(label="Response")
output_audio = Audio()

# Define the Gradio interface
iface = gr.Interface(
    fn=transcribe,
    inputs=[audio_input, text_input],
    outputs=[output_text],
    title="Hold On, Pain Ends (HOPE) 2",
    description="Talk to Your Nephrology Tutor HOPE",
    theme="compact",
    layout="vertical",
    allow_flagging=False
    )

# Run the Gradio interface
iface.launch()