File size: 6,992 Bytes
53c9ab2 2091088 98cf098 2091088 a5b21b0 bd8ef23 494d2b1 98cf098 32ca932 e608162 494d2b1 98cf098 2091088 98cf098 c3ffc00 2091088 c447195 2091088 98cf098 2091088 98cf098 2091088 e608162 c447195 e608162 98cf098 2091088 1091053 98cf098 e608162 98cf098 e608162 c3ffc00 e608162 32ca932 e608162 c3ffc00 e608162 98cf098 e608162 494d2b1 e608162 494d2b1 e608162 32ca932 e608162 53c9ab2 ac2595c e608162 98cf098 2091088 98cf098 2091088 98cf098 2091088 98cf098 a52a911 98cf098 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import openai
import gradio as gr
from gradio.components import Audio, Textbox
import os
import re
import tiktoken
from transformers import GPT2Tokenizer
import whisper
import pandas as pd
from datetime import datetime, timezone, timedelta
import notion_df
import concurrent.futures
import nltk
from nltk.tokenize import sent_tokenize
nltk.download('punkt')
# Define the tokenizer and model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = openai.api_key = os.environ["OPENAI_API_KEY"]
# Define the initial message and messages list
initmessage = 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'
initial_message = {"role": "system", "content": 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response.'}
messages = [initial_message]
messages_rev = [initial_message]
# Define the answer counter
answer_count = 0
# Define the Notion API key
API_KEY = os.environ["API_KEY"]
def transcribe(audio, text):
global messages
global answer_count
messages = [initial_message]
messages_rev = [initial_message]
transcript = {'text': ''}
input_text = []
counter = 0
# Transcribe the audio if provided
if audio is not None:
audio_file = open(audio, "rb")
transcript = openai.Audio.transcribe("whisper-1", audio_file, language="en")
messages.append({"role": "user", "content": transcript["text"]})
system_message = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=2000
)["choices"][0]["message"]
messages.append({"role": "system", "content": str(system_message['content'])})
messages_rev.append({"role": "system", "content": str(system_message['content'])})
# Concatenate the chat history
chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages_rev if message['role'] != 'user'])
# if not isinstance(messages[-1]['content'], str):
# continue
# Append the number of tokens used to the end of the chat transcript
df = pd.DataFrame([chat_transcript])
# Get the current time in Eastern Time (ET)
now_et = datetime.now(timezone(timedelta(hours=-4)))
# Format the time as string (YY-MM-DD HH:MM)
published_date = now_et.strftime('%m-%d-%y %H:%M')
notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date), api_key=API_KEY)
# Split the input text into sentences
sentences = sent_tokenize(text)
# Split the input text into sub-input tokens based on the condition
subinput_tokens = []
buffer = []
for sentence in sentences:
sentence_tokens = tokenizer.encode(sentence)
if len(buffer) + len(sentence_tokens) > 800:
subinput_tokens.append(buffer)
buffer = []
buffer.extend(sentence_tokens)
if buffer:
subinput_tokens.append(buffer)
chat_transcript = ''
for tokens in subinput_tokens:
messages.append[{"role": "user", "content": initmessage}]
# Decode the tokens into text
subinput_text = tokenizer.decode(tokens)
messages.append({"role": "user", "content": transcript["text"]+str(subinput_text)})
num_tokens = sum(len(tokenizer.encode(message["content"])) for message in messages)
if num_tokens > 2096:
# Concatenate the chat history
chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages if message['role'] != 'user'])
# Append the number of tokens used to the end of the chat transcript
chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"
# Get the current time in Eastern Time (ET)
now_et = datetime.now(timezone(timedelta(hours=-4)))
# Format the time as string (YY-MM-DD HH:MM)
published_date = now_et.strftime('%m-%d-%y %H:%M')
if counter > 0:
# Upload the chat transcript to Notion
df = pd.DataFrame([chat_transcript])
notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date+'FULL'), api_key=API_KEY)
counter += 1
messages = [{"role": "system", "content": initmessage}]
messages = [{"role": "user", "content": subinput_text}]
answer_count = 0
# Generate the system message using the OpenAI API
# with concurrent.futures.ThreadPoolExecutor() as executor:
system_message = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=2000
)["choices"][0]["message"]
messages.append({"role": "system", "content": str(system_message['content'])})
messages_rev.append({"role": "system", "content": str(system_message['content'])})
# Concatenate the chat history
chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages_rev if message['role'] != 'user'])
# if not isinstance(messages[-1]['content'], str):
# continue
# Append the number of tokens used to the end of the chat transcript
chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"
df = pd.DataFrame([chat_transcript])
# Get the current time in Eastern Time (ET)
now_et = datetime.now(timezone(timedelta(hours=-4)))
# Format the time as string (YY-MM-DD HH:MM)
published_date = now_et.strftime('%m-%d-%y %H:%M')
notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date), api_key=API_KEY)
# Return the chat transcript
return chat_transcript
# Define the input and output components for Gradio
audio_input = Audio(source="microphone", type="filepath", label="Record your message")
text_input = Textbox(label="Type your message", max_length=4096)
output_text = gr.outputs.Textbox(label="Response")
output_audio = Audio()
# Define the Gradio interface
iface = gr.Interface(
fn=transcribe,
inputs=[audio_input, text_input],
outputs=[output_text],
title="Hold On, Pain Ends (HOPE) 2",
description="Talk to Your Nephrology Tutor HOPE",
theme="compact",
layout="vertical",
allow_flagging=False
)
# Run the Gradio interface
iface.launch() |