File size: 19,387 Bytes
6e8f0e8
 
 
cefae98
6e8f0e8
 
cefae98
6e8f0e8
cefae98
6e8f0e8
 
 
b5eb4f0
 
 
 
 
 
 
6e8f0e8
 
 
b62a22a
6e8f0e8
 
68f1f8d
1b5a25e
7b74a47
75e6d4c
6e8f0e8
01002c8
6e8f0e8
 
 
 
 
b62a22a
6e8f0e8
0e0405b
 
 
 
 
 
26c827f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dba722
58afbcf
26c827f
 
 
 
 
 
 
58afbcf
 
2dba722
58afbcf
26c827f
 
 
 
 
 
 
58afbcf
 
2dba722
26c827f
58afbcf
2dba722
26c827f
 
2dba722
26c827f
58afbcf
 
 
 
26c827f
2dba722
 
 
26c827f
58afbcf
 
 
 
2dba722
 
 
 
 
 
 
 
 
 
 
26c827f
2dba722
 
 
 
 
 
26c827f
2dba722
 
58afbcf
 
 
 
 
2dba722
 
 
26c827f
2dba722
58afbcf
 
 
 
2dba722
 
 
26c827f
2dba722
58afbcf
 
 
 
2dba722
 
 
26c827f
2dba722
58afbcf
 
 
 
2dba722
 
 
26c827f
2dba722
58afbcf
 
2dba722
 
 
26c827f
2dba722
 
26c827f
58afbcf
 
 
e6a1748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e0405b
 
 
 
 
 
 
 
9df5b77
 
 
 
 
 
 
 
6443ba8
6e8f0e8
 
 
 
9df5b77
 
 
 
 
 
 
6e8f0e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01002c8
6e8f0e8
 
 
 
 
 
 
 
 
 
 
 
cbd0eac
6e8f0e8
 
 
 
 
a046b3b
6e8f0e8
 
 
75e6d4c
6e8f0e8
 
 
 
 
 
 
 
 
 
 
089dbf2
 
6e8f0e8
 
 
 
0e0405b
 
 
 
6e8f0e8
01002c8
0e0405b
8314ae4
01002c8
8314ae4
01002c8
8314ae4
0e0405b
 
 
 
 
 
 
 
3a00e21
b25fbe8
3a00e21
6e8f0e8
a046b3b
3a00e21
cbd0eac
6e8f0e8
a046b3b
 
6e8f0e8
0e0405b
 
 
 
7297744
 
 
0e0405b
 
58a3edb
6e8f0e8
 
 
 
0e0405b
b5494d1
b8a7783
6e8f0e8
 
 
 
 
 
cefae98
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import openai
import gradio as gr
from gradio.components import Audio, Textbox
import os
import re
import tiktoken
from transformers import GPT2Tokenizer
import whisper
import pandas as pd
from datetime import datetime, timezone, timedelta
import notion_df
import concurrent.futures
import nltk
from nltk.tokenize import sent_tokenize
nltk.download('punkt')
import spacy
from spacy import displacy
from gradio import Markdown
import threading

# Define the tokenizer and model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
model = openai.api_key = os.environ["OAPI_KEY"]

# Define the initial message and messages list
initialt = 'You are a USMLE Tutor. Respond with ALWAYS layered "bullet points" (listing rather than sentences) \
                   to all input with a fun mneumonics to memorize that list. But you can answer up to 1200 words if the user requests longer response. \
                    You are going to keep answer and also challenge the student to learn USMLE anatomy, phsysiology, and pathology.'
initial_message = {"role": "system", "content": initialt}
messages = [initial_message]
messages_rev = [initial_message]

# Define the answer counter
answer_count = 0

# Define the Notion API key
API_KEY = os.environ["NAPI_KEY"]

nlp = spacy.load("en_core_web_sm")
def process_nlp(system_message):
    # Colorize the system message text
    colorized_text = colorize_text(system_message['content'])
    return colorized_text

# # define color combinations for different parts of speech
# COLORS = {
#     "NOUN": "#5e5e5e",  # Dark gray
#     "VERB": "#ff6936",  # Orange
#     "ADJ": "#4363d8",   # Blue
#     "ADV": "#228b22",   # Green
#     "digit": "#9a45d6", # Purple
#     "punct": "#ffcc00", # Yellow
#     "quote": "#b300b3"  # Magenta
# }

# # define color combinations for individuals with dyslexia
# DYSLEXIA_COLORS = {
#     "NOUN": "#5e5e5e",
#     "VERB": "#ff6936",
#     "ADJ": "#4363d8",
#     "ADV": "#228b22",
#     "digit": "#9a45d6",
#     "punct": "#ffcc00",
#     "quote": "#b300b3"
# }

# # define a muted background color
# BACKGROUND_COLOR = "#f5f5f5"  # Light gray

# # define font and size
# FONT = "Arial"
# FONT_SIZE = "14px"

# # load the English language model
# nlp = spacy.load('en_core_web_sm')

# def colorize_text(text, colors=DYSLEXIA_COLORS, background_color=None):
#     if colors is None:
#         colors = COLORS
#     colorized_text = ""
#     lines = text.split("\n")
    
#     # set background color
#     if background_color is None:
#         background_color = BACKGROUND_COLOR
    
#     # iterate over the lines in the text
#     for line in lines:
#         # parse the line with the language model
#         doc = nlp(line)
#         # iterate over the tokens in the line
#         for token in doc:
#             # check if the token is an entity
#             if token.ent_type_:
#                 # use dyslexia colors for entity if available
#                 if colors == COLORS:
#                     color = DYSLEXIA_COLORS.get(token.pos_, None)
#                 else:
#                     color = colors.get(token.pos_, None)
#                 # check if a color is available for the token
#                 if color is not None:
#                     colorized_text += (
#                         f'<span style="color: {color}; '
#                         f'background-color: {background_color}; '
#                         f'font-family: {FONT}; '
#                         f'font-size: {FONT_SIZE}; '
#                         f'font-weight: bold; '
#                         f'text-decoration: none; '
#                         f'padding-right: 0.5em;">'  # Add space between tokens
#                         f"{token.text}</span>"
#                     )
#                 else:
#                     colorized_text += (
#                         f'<span style="font-family: {FONT}; '
#                         f'font-size: {FONT_SIZE}; '
#                         f'font-weight: bold; '
#                         f'text-decoration: none; '
#                         f'padding-right: 0.5em;">'  # Add space between tokens
#                         f"{token.text}</span>"
#                     )
#             else:
#                 # check if a color is available for the token
#                 color = colors.get(token.pos_, None)
#                 if color is not None:
#                     colorized_text += (
#                         f'<span style="color: {color}; '
#                         f'background-color: {background_color}; '
#                         f'font-family: {FONT}; '
#                         f'font-size: {FONT_SIZE}; '
#                         f'font-weight: bold; '
#                         f'text-decoration: none; '
#                         f'padding-right: 0.5em;">'  # Add space between tokens
#                         f"{token.text}</span>"
#                     )
#                 elif token.is_digit:
#                     colorized_text += (
#                         f'<span style="color: {colors["digit"]}; '
#                         f'background-color: {background_color}; '
#                         f'font-family: {FONT}; '
#                         f'font-size: {FONT_SIZE}; '
#                         f'font-weight: bold; '
#                         f'text-decoration: none; '
#                         f'padding-right: 0.5em;">'  # Add space between tokens
#                         f"{token.text}</span>"
#                     )
#                 elif token.is_punct:
#                     colorized_text += (
#                         f'<span style="color: {colors["punct"]}; '
#                         f'background-color: {background_color}; '
#                         f'font-family: {FONT}; '
#                         f'font-size: {FONT_SIZE}; '
#                         f'font-weight: bold; '
#                         f'text-decoration: none; '
#                         f'padding-right: 0.5em;">'  # Add space between tokens
#                         f"{token.text}</span>"
#                     )
#                 elif token.is_quote:
#                     colorized_text += (
#                         f'<span style="color: {colors["quote"]}; '
#                         f'background-color: {background_color}; '
#                         f'font-family: {FONT}; '
#                         f'font-size: {FONT_SIZE}; '
#                         f'text-decoration: none; '
#                         f'padding-right: 0.5em;">'  # Add space between tokens
#                         f"{token.text}</span>"
#                     )
#                 else:
#                     colorized_text += (
#                         f'<span style="font-family: {FONT}; '
#                         f'font-size: {FONT_SIZE}; '
#                         f'font-weight: bold; '
#                         f'text-decoration: none; '
#                         f'padding-right: 0.5em;">'  # Add space between tokens
#                         f"{token.text}</span>"
#                     )
#         colorized_text += "<br>"
    
#     return colorized_text

# define color combinations for different parts of speech
COLORS = {
    "NOUN": "#FF3300",
    "VERB": "#008000",
    "ADJ": "#1E90FF",
    "ADV": "#FF8C00",
    "digit": "#FF1493",
    "punct": "#8B0000",
    "quote": "#800080",
}

# define color combinations for individuals with dyslexia
DYSLEXIA_COLORS = {
    "NOUN": "#1E90FF",
    "VERB": "#006400",
    "ADJ": "#00CED1",
    "ADV": "#FF8C00",
    "digit": "#FF1493",
    "punct": "#A0522D",
    "quote": "#800080",
}

# define a muted background color
BACKGROUND_COLOR = "#EAEAEA"

# define font and size
FONT = "Georgia"
FONT_SIZE = "18px"

def colorize_text(text, colors=None, background_color=None):
    if colors is None:
        colors = COLORS
    colorized_text = ""
    lines = text.split("\n")

    # set background color
    if background_color is None:
        background_color = BACKGROUND_COLOR

    for line in lines:
        doc = nlp(line)
        for token in doc:
            if token.ent_type_:
                # use dyslexia colors for entity if available
                if colors == COLORS:
                    color = DYSLEXIA_COLORS.get(token.pos_, None)
                else:
                    color = colors.get(token.pos_, None)
                if color is not None:
                    colorized_text += (
                        f'<span style="color: {color}; '
                        f'background-color: {background_color}; '
                        f'font-family: {FONT}; '
                        f'font-size: {FONT_SIZE}; '
                        f'text-decoration: underline;">'
                        f"{token.text}</span>"
                    )
                else:
                    colorized_text += (
                        f'<span style="font-family: {FONT}; '
                        f'font-size: {FONT_SIZE}; '
                        f'text-decoration: underline;">'
                        f"{token.text}</span>"
                    )
            else:
                color = colors.get(token.pos_, None)
                if color is not None:
                    colorized_text += (
                        f'<span style="color: {color}; '
                        f'background-color: {background_color}; '
                        f'font-family: {FONT}; '
                        f'font-size: {FONT_SIZE}; '
                        f'text-decoration: underline;">'
                        f"{token.text}</span>"
                    )
                elif token.is_digit:
                    colorized_text += (
                        f'<span style="color: {colors["digit"]}; '
                        f'background-color: {background_color}; '
                        f'font-family: {FONT}; '
                        f'font-size: {FONT_SIZE}; '
                        f'text-decoration: underline;">'
                        f"{token.text}</span>"
                    )
                elif token.is_punct:
                    colorized_text += (
                        f'<span style="color: {colors["punct"]}; '
                        f'background-color: {background_color}; '
                        f'font-family: {FONT}; '
                        f'font-size: {FONT_SIZE}; '
                        f'text-decoration: underline;">'
                        f"{token.text}</span>"
                    )
                elif token.is_quote:
                    colorized_text += (
                        f'<span style="color: {colors["quote"]}; '
                        f'background-color: {background_color}; '
                        f'font-family: {FONT}; '
                        f'font-size: {FONT_SIZE}; '
                        f'text-decoration: underline;">'
                        f"{token.text}</span>"
                    )
                else:
                    colorized_text += (
                        f'<span style="font-family: {FONT}; '
                        f'font-size: {FONT_SIZE}; '
                        f'text-decoration: underline;">'
                        f"{token.text}</span>"
                    )
            colorized_text += " "
        colorized_text += "<br>"
    return colorized_text

# def colorize_text(text):
#     colorized_text = ""
#     lines = text.split("\n")

#     for line in lines:
#         doc = nlp(line)
#         for token in doc:
#             if token.ent_type_:
#                 colorized_text += f'**{token.text_with_ws}**'
#             elif token.pos_ == 'NOUN':
#                 colorized_text += f'<span style="color: #FF3300; background-color: transparent;">{token.text_with_ws}</span>'
#             elif token.pos_ == 'VERB':
#                 colorized_text += f'<span style="color: #FFFF00; background-color: transparent;">{token.text_with_ws}</span>'
#             elif token.pos_ == 'ADJ':
#                 colorized_text += f'<span style="color: #00CC00; background-color: transparent;">{token.text_with_ws}</span>'
#             elif token.pos_ == 'ADV':
#                 colorized_text += f'<span style="color: #FF6600; background-color: transparent;">{token.text_with_ws}</span>'
#             elif token.is_digit:
#                 colorized_text += f'<span style="color: #9900CC; background-color: transparent;">{token.text_with_ws}</span>'
#             elif token.is_punct:
#                 colorized_text += f'<span style="color: #8B4513; background-color: transparent;">{token.text_with_ws}</span>'
#             elif token.is_quote:
#                 colorized_text += f'<span style="color: #008080; background-color: transparent;">{token.text_with_ws}</span>'
#             else:
#                 colorized_text += token.text_with_ws
#         colorized_text += "<br>"

#     return colorized_text

def colorize_and_update(system_message, submit_update):
    colorized_system_message = colorize_text(system_message['content'])
    submit_update(None, colorized_system_message)  # Pass the colorized_system_message as the second output

def update_text_output(system_message, submit_update):
    submit_update(system_message['content'], None)


def train(text):
    now_et = datetime.now(timezone(timedelta(hours=-4)))
    published_date = now_et.strftime('%m-%d-%y %H:%M')
    df = pd.DataFrame([text])
    notion_df.upload(df, 'https://www.notion.so/US-62e861a0b35f43da8ef9a7789512b8c2?pvs=4', title=str(published_date), api_key=API_KEY)


def transcribe(audio, text, submit_update=None):
    global messages
    global answer_count
    transcript = {'text': ''} 
    input_text = []
    
    # Check if the first word of the first line is "COLORIZE"
    if text and text.split("\n")[0].split(" ")[0].strip().upper() == "COLORIZE":
        train(text)
        colorized_input = colorize_text(text)
        return text, colorized_input

    # Transcribe the audio if provided
    if audio is not None:
        audio_file = open(audio, "rb")
        transcript = openai.Audio.transcribe("whisper-1", audio_file, language="en")

    # Tokenize the text input
    if text is not None:
        # Split the input text into sentences
        sentences = re.split("(?<=[.!?]) +", text)
    
        # Initialize a list to store the tokens
        input_tokens = []
    
        # Add each sentence to the input_tokens list
        for sentence in sentences:
            # Tokenize the sentence using the GPT-2 tokenizer
            sentence_tokens = tokenizer.encode(sentence)
            # Check if adding the sentence would exceed the token limit
            if len(input_tokens) + len(sentence_tokens) < 1440:
                # Add the sentence tokens to the input_tokens list
                input_tokens.extend(sentence_tokens)
            else:
                # If adding the sentence would exceed the token limit, truncate it
                sentence_tokens = sentence_tokens[:1440-len(input_tokens)]
                input_tokens.extend(sentence_tokens)
                break
        # Decode the input tokens into text
        input_text = tokenizer.decode(input_tokens)
    
        # Add the input text to the messages list
    messages.append({"role": "user", "content": transcript["text"]+input_text})


    # Check if the accumulated tokens have exceeded 2096
    num_tokens = sum(len(tokenizer.encode(message["content"])) for message in messages)
    if num_tokens > 2096:
        # Concatenate the chat history
        chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages if message['role'] != 'system'])

        # Append the number of tokens used to the end of the chat transcript
        chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"

        # Get the current time in Eastern Time (ET)
        now_et = datetime.now(timezone(timedelta(hours=-4)))
        # Format the time as string (YY-MM-DD HH:MM)
        published_date = now_et.strftime('%m-%d-%y %H:%M')

        # Upload the chat transcript to Notion
        df = pd.DataFrame([chat_transcript])
        notion_df.upload(df, 'https://www.notion.so/YENA-be569d0a40c940e7b6e0679318215790?pvs=4', title=str(published_date+'back_up'), api_key=API_KEY)

        # Reset the messages list and answer counter
        messages = [initial_message]
        messages.append({"role": "user", "content": initialt})
        answer_count = 0
        # Add the input text to the messages list
        messages.append({"role": "user", "content": input_text})
    else:
        # Increment the answer counter
        answer_count += 1

    # Generate the system message using the OpenAI API
    with concurrent.futures.ThreadPoolExecutor() as executor:
        prompt = [{"text": f"{message['role']}: {message['content']}\n\n"} for message in messages]
        system_message = openai.ChatCompletion.create(
            # model="gpt-3.5-turbo",
            model="gpt-4",
            messages=messages,
            max_tokens=2000
        )["choices"][0]["message"]
    # Wait for the completion of the OpenAI API call

    if submit_update:  # Check if submit_update is not None
        update_text_output(system_message, submit_update)

    # Add the system message to the messages list
    messages.append(system_message)

    # Add the system message to the beginning of the messages list
    messages_rev.insert(0, system_message)
    # Add the input text to the messages list
    messages_rev.insert(0, {"role": "user", "content": input_text + transcript["text"]})

    # Start a separate thread to process the colorization and update the Gradio interface
    if submit_update:  # Check if submit_update is not None
        colorize_thread = threading.Thread(target=colorize_and_update, args=(system_message, submit_update))
        colorize_thread.start()

    # Return the system message immediately
    chat_transcript = system_message['content']

    # Concatenate the chat history
    chat_transcript = "\n\n".join([f"[ANSWER {answer_count}]{message['role']}: {message['content']}" for message in messages_rev if message['role'] != 'system'])
    
    # Append the number of tokens used to the end of the chat transcript
    chat_transcript += f"\n\nNumber of tokens used: {num_tokens}\n\n"
    
    now_et = datetime.now(timezone(timedelta(hours=-4)))
    published_date = now_et.strftime('%m-%d-%y %H:%M')
    df = pd.DataFrame([chat_transcript])
    notion_df.upload(df, 'https://www.notion.so/YENA-be569d0a40c940e7b6e0679318215790?pvs=4', title=str(published_date), api_key=API_KEY)

    # Return the chat transcript    
    return system_message['content'], colorize_text(system_message['content'])


# Define the input and output components for Gradio
audio_input = Audio(source="microphone", type="filepath", label="Record your message")
text_input = Textbox(label="Type your message", max_length=4096)
output_text = Textbox(label="Text Output")
output_html = Markdown()

# Define the Gradio interface
iface = gr.Interface(
    fn=transcribe,
    inputs=[audio_input, text_input],
    outputs=[output_text, output_html],
    title="Hold On, Pain Ends (HOPE)",
    description="Talk to Your USMLE Tutor HOPE. \n If you want to colorize your note, type COLORIZE in the first line of your input.",
    theme="compact",
    layout="vertical",
    allow_flagging=False
    )

# Run the Gradio interface
iface.launch()