Spaces:
Runtime error
Runtime error
File size: 10,478 Bytes
4c022fe 3c42b4c 4c022fe 51be712 4c022fe ed9d237 4c022fe d0745b6 4c022fe ed9d237 4c022fe ab7db7f 4c022fe ab7db7f 4c022fe ab7db7f 4c022fe 69e92de 4c022fe bc4d8bb 4c022fe ed9d237 4c022fe bc4d8bb 4c022fe ae61c93 ed9d237 4c022fe ae61c93 4c022fe ed9d237 4c022fe fb8cc1d ae61c93 fb8cc1d ae61c93 ed9d237 fb8cc1d ae61c93 fb8cc1d ae61c93 ed9d237 fb8cc1d 4c022fe ed9d237 4c022fe 18b1465 3c42b4c 4c022fe ed9d237 4c022fe 7b1dafa 4c022fe 7b1dafa 3c42b4c 4c022fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import math
import random
import os
import json
import time
import argparse
import torch
import numpy as np
from torchvision import transforms
from models.region_diffusion import RegionDiffusion
from utils.attention_utils import get_token_maps
from utils.richtext_utils import seed_everything, parse_json, get_region_diffusion_input,\
get_attention_control_input, get_gradient_guidance_input
import gradio as gr
from PIL import Image, ImageOps
help_text = """
Instructions placeholder.
"""
def main():
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = RegionDiffusion(device)
def generate(
text_input: str,
negative_text: str,
height: int,
width: int,
seed: int,
steps: int,
guidance_weight: float,
color_guidance_weight: float,
):
run_dir = 'results/'
# Load region diffusion model.
steps = 41 if not steps else steps
guidance_weight = 8.5 if not guidance_weight else guidance_weight
# parse json to span attributes
base_text_prompt, style_text_prompts, footnote_text_prompts, footnote_target_tokens,\
color_text_prompts, color_names, color_rgbs, size_text_prompts_and_sizes, use_grad_guidance = parse_json(
json.loads(text_input), device)
# create control input for region diffusion
region_text_prompts, region_target_token_ids, base_tokens = get_region_diffusion_input(
model, base_text_prompt, style_text_prompts, footnote_text_prompts,
footnote_target_tokens, color_text_prompts, color_names)
# create control input for cross attention
text_format_dict = get_attention_control_input(
model, base_tokens, size_text_prompts_and_sizes)
# create control input for region guidance
text_format_dict, color_target_token_ids = get_gradient_guidance_input(
model, base_tokens, color_text_prompts, color_rgbs, text_format_dict, color_guidance_weight=color_guidance_weight)
seed_everything(seed)
# get token maps from plain text to image generation.
begin_time = time.time()
if model.attention_maps is None:
model.register_evaluation_hooks()
else:
model.reset_attention_maps()
plain_img = model.produce_attn_maps([base_text_prompt], [negative_text],
height=height, width=width, num_inference_steps=steps,
guidance_scale=guidance_weight)
print('time lapses to get attention maps: %.4f' % (time.time()-begin_time))
color_obj_masks, _ = get_token_maps(
model.attention_maps, run_dir, width//8, height//8, color_target_token_ids, seed)
model.masks, token_maps = get_token_maps(
model.attention_maps, run_dir, width//8, height//8, region_target_token_ids, seed, base_tokens)
color_obj_masks = [transforms.functional.resize(color_obj_mask, (height, width),
interpolation=transforms.InterpolationMode.BICUBIC,
antialias=True)
for color_obj_mask in color_obj_masks]
text_format_dict['color_obj_atten'] = color_obj_masks
model.remove_evaluation_hooks()
# generate image from rich text
begin_time = time.time()
seed_everything(seed)
rich_img = model.prompt_to_img(region_text_prompts, [negative_text],
height=height, width=width, num_inference_steps=steps,
guidance_scale=guidance_weight, use_grad_guidance=use_grad_guidance,
text_format_dict=text_format_dict)
print('time lapses to generate image from rich text: %.4f' %
(time.time()-begin_time))
cat_img = np.concatenate([plain_img[0], rich_img[0]], 1)
return [cat_img, token_maps]
with gr.Blocks() as demo:
gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;">Expressive Text-to-Image Generation with Rich Text</h1>
<p> Visit our <a href="https://rich-text-to-image.github.io/rich-text-to-json.html">rich-text-to-json interface</a> to generate rich-text JSON input.<p/>""")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label='Rich-text JSON Input',
max_lines=1,
placeholder='Example: \'{"ops":[{"insert":"a Gothic "},{"attributes":{"color":"#b26b00"},"insert":"church"},{"insert":" in a the sunset with a beautiful landscape in the background.\n"}]}\'')
negative_prompt = gr.Textbox(
label='Negative Prompt',
max_lines=1,
placeholder='')
seed = gr.Slider(label='Seed',
minimum=0,
maximum=100000,
step=1,
value=6)
color_guidance_weight = gr.Slider(label='Color weight lambda',
minimum=0,
maximum=2,
step=0.1,
value=0.5)
with gr.Accordion('Other Parameters', open=False):
steps = gr.Slider(label='Number of Steps',
minimum=0,
maximum=500,
step=1,
value=41)
guidance_weight = gr.Slider(label='CFG weight',
minimum=0,
maximum=50,
step=0.1,
value=8.5)
width = gr.Dropdown(choices=[512, 768, 896],
value=512,
label='Width',
visible=True)
height = gr.Dropdown(choices=[512, 768, 896],
value=512,
label='height',
visible=True)
with gr.Row():
with gr.Column(scale=1, min_width=100):
generate_button = gr.Button("Generate")
with gr.Column():
result = gr.Image(label='Result')
token_map = gr.Image(label='TokenMap')
with gr.Row():
examples = [
[
'{"ops":[{"insert":"a "},{"attributes":{"font":"slabo"},"insert":"night sky filled with stars"},{"insert":" above a "},{"attributes":{"font":"roboto"},"insert":"turbulent sea with giant waves"}]}',
'',
512,
512,
6,
1,
],
[
'{"ops":[{"attributes":{"link":"the awe-inspiring sky and ocean in the style of J.M.W. Turner"},"insert":"the awe-inspiring sky and sea"},{"insert":" by "},{"attributes":{"font":"mirza"},"insert":"a coast with flowers and grasses in spring"}]}',
'',
512,
512,
9,
1,
],
[
'{"ops":[{"insert":"a Gothic "},{"attributes":{"color":"#b26b00"},"insert":"church"},{"insert":" in a the sunset with a beautiful landscape in the background."}]}',
'',
512,
512,
6,
1,
],
[
'{"ops": [{"insert": "A pizza with "}, {"attributes": {"size": "50px"}, "insert": "pineapples"}, {"insert": ", pepperonis, and mushrooms on the top, 4k, photorealistic"}]}',
'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality',
768,
896,
6,
1,
],
[
'{"ops":[{"insert":"a "},{"attributes":{"font":"mirza"},"insert":"beautiful garden"},{"insert":" with a "},{"attributes":{"font":"roboto"},"insert":"snow mountain in the background"},{"insert":""}]}',
'',
512,
512,
3,
1,
],
[
'{"ops":[{"insert":"A close-up 4k dslr photo of a "},{"attributes":{"link":"A cat wearing sunglasses and a bandana around its neck."},"insert":"cat"},{"insert":" riding a scooter. Palm trees in the background."}]}',
'',
512,
512,
6,
1,
],
]
gr.Examples(examples=examples,
inputs=[
text_input,
negative_prompt,
height,
width,
seed,
color_guidance_weight,
],
outputs=[
result,
token_map,
],
fn=generate,
# cache_examples=True,
examples_per_page=20)
with gr.Row():
gr.Markdown(help_text)
generate_button.click(
fn=generate,
inputs=[
text_input,
negative_prompt,
height,
width,
seed,
steps,
guidance_weight,
color_guidance_weight,
],
outputs=[result, token_map],
)
demo.queue(concurrency_count=1)
demo.launch(share=False)
if __name__ == "__main__":
main() |