Spaces:
Runtime error
Runtime error
import math | |
import random | |
import os | |
import json | |
import time | |
import argparse | |
import torch | |
import numpy as np | |
from torchvision import transforms | |
from models.region_diffusion import RegionDiffusion | |
from utils.attention_utils import get_token_maps | |
from utils.richtext_utils import seed_everything, parse_json, get_region_diffusion_input,\ | |
get_attention_control_input, get_gradient_guidance_input | |
import gradio as gr | |
from PIL import Image, ImageOps | |
help_text = """ | |
Instructions placeholder. | |
""" | |
def main(): | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = RegionDiffusion(device) | |
def generate( | |
text_input: str, | |
negative_text: str, | |
height: int, | |
width: int, | |
seed: int, | |
steps: int, | |
guidance_weight: float, | |
color_guidance_weight: float, | |
): | |
run_dir = 'results/' | |
# Load region diffusion model. | |
steps = 41 if not steps else steps | |
guidance_weight = 8.5 if not guidance_weight else guidance_weight | |
# parse json to span attributes | |
base_text_prompt, style_text_prompts, footnote_text_prompts, footnote_target_tokens,\ | |
color_text_prompts, color_names, color_rgbs, size_text_prompts_and_sizes, use_grad_guidance = parse_json( | |
json.loads(text_input), device) | |
# create control input for region diffusion | |
region_text_prompts, region_target_token_ids, base_tokens = get_region_diffusion_input( | |
model, base_text_prompt, style_text_prompts, footnote_text_prompts, | |
footnote_target_tokens, color_text_prompts, color_names) | |
# create control input for cross attention | |
text_format_dict = get_attention_control_input( | |
model, base_tokens, size_text_prompts_and_sizes) | |
# create control input for region guidance | |
text_format_dict, color_target_token_ids = get_gradient_guidance_input( | |
model, base_tokens, color_text_prompts, color_rgbs, text_format_dict, color_guidance_weight=color_guidance_weight) | |
seed_everything(seed) | |
# get token maps from plain text to image generation. | |
begin_time = time.time() | |
if model.attention_maps is None: | |
model.register_evaluation_hooks() | |
else: | |
model.reset_attention_maps() | |
plain_img = model.produce_attn_maps([base_text_prompt], [negative_text], | |
height=height, width=width, num_inference_steps=steps, | |
guidance_scale=guidance_weight) | |
print('time lapses to get attention maps: %.4f' % (time.time()-begin_time)) | |
color_obj_masks, _ = get_token_maps( | |
model.attention_maps, run_dir, width//8, height//8, color_target_token_ids, seed) | |
model.masks, token_maps = get_token_maps( | |
model.attention_maps, run_dir, width//8, height//8, region_target_token_ids, seed, base_tokens) | |
color_obj_masks = [transforms.functional.resize(color_obj_mask, (height, width), | |
interpolation=transforms.InterpolationMode.BICUBIC, | |
antialias=True) | |
for color_obj_mask in color_obj_masks] | |
text_format_dict['color_obj_atten'] = color_obj_masks | |
model.remove_evaluation_hooks() | |
# generate image from rich text | |
begin_time = time.time() | |
seed_everything(seed) | |
rich_img = model.prompt_to_img(region_text_prompts, [negative_text], | |
height=height, width=width, num_inference_steps=steps, | |
guidance_scale=guidance_weight, use_grad_guidance=use_grad_guidance, | |
text_format_dict=text_format_dict) | |
print('time lapses to generate image from rich text: %.4f' % | |
(time.time()-begin_time)) | |
cat_img = np.concatenate([plain_img[0], rich_img[0]], 1) | |
return [cat_img, token_maps] | |
with gr.Blocks() as demo: | |
gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 7px;">Expressive Text-to-Image Generation with Rich Text</h1> | |
<p> Visit our <a href="https://rich-text-to-image.github.io/rich-text-to-json.html">rich-text-to-json interface</a> to generate rich-text JSON input.<p/>""") | |
with gr.Row(): | |
with gr.Column(): | |
text_input = gr.Textbox( | |
label='Rich-text JSON Input', | |
max_lines=1, | |
placeholder='Example: \'{"ops":[{"insert":"a Gothic "},{"attributes":{"color":"#b26b00"},"insert":"church"},{"insert":" in a the sunset with a beautiful landscape in the background.\n"}]}\'') | |
negative_prompt = gr.Textbox( | |
label='Negative Prompt', | |
max_lines=1, | |
placeholder='') | |
seed = gr.Slider(label='Seed', | |
minimum=0, | |
maximum=100000, | |
step=1, | |
value=6) | |
color_guidance_weight = gr.Slider(label='Color weight lambda', | |
minimum=0, | |
maximum=2, | |
step=0.1, | |
value=0.5) | |
with gr.Accordion('Other Parameters', open=False): | |
steps = gr.Slider(label='Number of Steps', | |
minimum=0, | |
maximum=500, | |
step=1, | |
value=41) | |
guidance_weight = gr.Slider(label='CFG weight', | |
minimum=0, | |
maximum=50, | |
step=0.1, | |
value=8.5) | |
width = gr.Dropdown(choices=[512, 768, 896], | |
value=512, | |
label='Width', | |
visible=True) | |
height = gr.Dropdown(choices=[512, 768, 896], | |
value=512, | |
label='height', | |
visible=True) | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=100): | |
generate_button = gr.Button("Generate") | |
with gr.Column(): | |
result = gr.Image(label='Result') | |
token_map = gr.Image(label='TokenMap') | |
with gr.Row(): | |
examples = [ | |
[ | |
'{"ops":[{"insert":"a "},{"attributes":{"font":"slabo"},"insert":"night sky filled with stars"},{"insert":" above a "},{"attributes":{"font":"roboto"},"insert":"turbulent sea with giant waves"}]}', | |
'', | |
512, | |
512, | |
6, | |
1, | |
], | |
[ | |
'{"ops":[{"attributes":{"link":"the awe-inspiring sky and ocean in the style of J.M.W. Turner"},"insert":"the awe-inspiring sky and sea"},{"insert":" by "},{"attributes":{"font":"mirza"},"insert":"a coast with flowers and grasses in spring"}]}', | |
'', | |
512, | |
512, | |
9, | |
1, | |
], | |
[ | |
'{"ops":[{"insert":"a Gothic "},{"attributes":{"color":"#b26b00"},"insert":"church"},{"insert":" in a the sunset with a beautiful landscape in the background."}]}', | |
'', | |
512, | |
512, | |
6, | |
1, | |
], | |
[ | |
'{"ops": [{"insert": "A pizza with "}, {"attributes": {"size": "50px"}, "insert": "pineapples"}, {"insert": ", pepperonis, and mushrooms on the top, 4k, photorealistic"}]}', | |
'blurry, art, painting, rendering, drawing, sketch, ugly, duplicate, morbid, mutilated, mutated, deformed, disfigured low quality, worst quality', | |
768, | |
896, | |
6, | |
1, | |
], | |
[ | |
'{"ops":[{"insert":"a "},{"attributes":{"font":"mirza"},"insert":"beautiful garden"},{"insert":" with a "},{"attributes":{"font":"roboto"},"insert":"snow mountain in the background"},{"insert":""}]}', | |
'', | |
512, | |
512, | |
3, | |
1, | |
], | |
[ | |
'{"ops":[{"insert":"A close-up 4k dslr photo of a "},{"attributes":{"link":"A cat wearing sunglasses and a bandana around its neck."},"insert":"cat"},{"insert":" riding a scooter. Palm trees in the background."}]}', | |
'', | |
512, | |
512, | |
6, | |
1, | |
], | |
] | |
gr.Examples(examples=examples, | |
inputs=[ | |
text_input, | |
negative_prompt, | |
height, | |
width, | |
seed, | |
color_guidance_weight, | |
], | |
outputs=[ | |
result, | |
token_map, | |
], | |
fn=generate, | |
# cache_examples=True, | |
examples_per_page=20) | |
with gr.Row(): | |
gr.Markdown(help_text) | |
generate_button.click( | |
fn=generate, | |
inputs=[ | |
text_input, | |
negative_prompt, | |
height, | |
width, | |
seed, | |
steps, | |
guidance_weight, | |
color_guidance_weight, | |
], | |
outputs=[result, token_map], | |
) | |
demo.queue(concurrency_count=1) | |
demo.launch(share=False) | |
if __name__ == "__main__": | |
main() |