File size: 5,504 Bytes
4e159ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import streamlit as st
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.utils import shuffle
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split


# Function for disease task
def run_disease_task():
    # Number of samples per class
    N_per_class = 500

    # Number of classes
    num_classes = 5

    # Total number of samples
    N = N_per_class * num_classes

    # Number of features
    D = 2  # For visualization purposes

    # Initialize feature matrix X and label vector y
    X = np.zeros((N, D))
    y = np.zeros(N, dtype=int)

    # Generate a multi-class spiral dataset
    def generate_multi_class_spiral(points, classes):
        X = np.zeros((points * classes, 2))
        y = np.zeros(points * classes, dtype=int)
        for class_number in range(classes):
            ix = range(points * class_number, points * (class_number + 1))
            r = np.linspace(0.0, 1, points)
            t = np.linspace(class_number * 4, (class_number + 1) * 4, points) + np.random.randn(points) * 0.2
            X[ix] = np.c_[r * np.sin(t), r * np.cos(t)]
            y[ix] = class_number
        return X, y

    X, y = generate_multi_class_spiral(N_per_class, num_classes)

    # Shuffle the dataset
    X, y = shuffle(X, y, random_state=42)

    # Normalize the features
    scaler = StandardScaler()
    X_scaled = scaler.fit_transform(X)

    # Convert data to torch tensors
    X_train_tensor = torch.from_numpy(X_scaled).float()
    y_train_tensor = torch.from_numpy(y).long()

    # Split data into training and test sets
    X_train_tensor, X_test_tensor, y_train_tensor, y_test_tensor = train_test_split(
        X_train_tensor, y_train_tensor, test_size=0.2, random_state=42
    )

    # Logistic Regression Model
    linear_model = LogisticRegression(max_iter=200)
    linear_model.fit(X_scaled[: int(0.8 * N)], y[: int(0.8 * N)])

    # Linear model accuracy
    linear_accuracy = linear_model.score(X_scaled[int(0.8 * N) :], y[int(0.8 * N) :])

    # Neural Network Model
    class NeuralNet(nn.Module):
        def __init__(self, input_dim, hidden_dims, output_dim):
            super(NeuralNet, self).__init__()
            layers = []
            in_dim = input_dim
            for h_dim in hidden_dims:
                layers.append(nn.Linear(in_dim, h_dim))
                layers.append(nn.ReLU())
                layers.append(nn.BatchNorm1d(h_dim))
                layers.append(nn.Dropout(0.3))
                in_dim = h_dim
            layers.append(nn.Linear(in_dim, output_dim))
            self.model = nn.Sequential(*layers)

        def forward(self, x):
            return self.model(x)

    # Initialize Neural Network Model
    hidden_dims = [128, 64, 32]
    neural_model = NeuralNet(D, hidden_dims, num_classes)

    # Loss and optimizer for Neural Network Model
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(neural_model.parameters(), lr=0.001, weight_decay=1e-4)

    # Training the Neural Network Model
    num_epochs = 200
    for epoch in range(num_epochs):
        neural_model.train()
        outputs = neural_model(X_train_tensor)
        loss = criterion(outputs, y_train_tensor)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if (epoch + 1) % 20 == 0:
            st.write(f'Neural Network - Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')

    # Evaluate Neural Network Model
    neural_model.eval()
    with torch.no_grad():
        outputs = neural_model(X_test_tensor)
        _, predicted = torch.max(outputs.data, 1)
        neural_accuracy = (predicted == y_test_tensor).sum().item() / y_test_tensor.size(0)
        st.write(f'Neural Network Model Accuracy: {neural_accuracy * 100:.2f}%')

    # Summary of Accuracies
    st.write("\nSummary of Accuracies:")
    st.write(f'Linear Model Accuracy: {linear_accuracy * 100:.2f}%')
    st.write(f'Neural Network Model Accuracy: {neural_accuracy * 100:.2f}%')


# Function for male superhero task
def run_male_superhero_task():
    st.write("Training Male Superhero model...")
    # Male superhero training logic goes here
    # Add dummy print statements as a placeholder
    st.write("Male superhero model - Step 1: Data prepared.")
    st.write("Male superhero model - Step 2: Model trained.")
    st.write("Male superhero model - Step 3: Results evaluated.")


# Function for female superhero task
def run_female_superhero_task():
    st.write("Training Female Superhero model...")
    # Female superhero training logic goes here
    # Add dummy print statements as a placeholder
    st.write("Female superhero model - Step 1: Data prepared.")
    st.write("Female superhero model - Step 2: Model trained.")
    st.write("Female superhero model - Step 3: Results evaluated.")


# Streamlit UI
st.title("AI Training Demo")

# Task selection buttons
task = st.selectbox("Choose a task:", ("Superhero", "Disease"))

if task == "Superhero":
    # Sub-options for Male and Female Superhero
    gender = st.selectbox("Choose the gender:", ("Male", "Female"))

    if gender == "Male":
        if st.button("Run Male Superhero Task"):
            run_male_superhero_task()

    elif gender == "Female":
        if st.button("Run Female Superhero Task"):
            run_female_superhero_task()

elif task == "Disease":
    if st.button("Run Disease Task"):
        run_disease_task()