HTNotteDeiRicercatori24_Classifiers / NdR_female_superheros.py
soumickmj's picture
v2 release
a76b5d6
raw
history blame
9.92 kB
import streamlit as st
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# Set random seed for reproducibility
np.random.seed(42)
torch.manual_seed(42)
def run_female_superhero_train():
# Number of samples per superhero
N_per_class = 200
# List of female superheroes
superheroes = ['Wonder Woman', 'Captain Marvel', 'Vedova Nera', 'Tempesta', 'Supergirl']
# Total number of classes
num_classes = len(superheroes)
# Total number of samples
N = N_per_class * num_classes
# Number of original features
D = 5 # Strength, Speed, Intelligence, Durability, Energy Projection
# Update the total number of features after adding the interaction term
total_features = D + 1 # Original features plus the interaction term
# Initialize feature matrix X and label vector y
X = np.zeros((N, total_features))
y = np.zeros(N, dtype=int)
# Define the mean and standard deviation for each feature per superhero
# Features: [Strength, Speed, Intelligence, Durability, Energy Projection]
superhero_stats = {
'Wonder Woman': {
'mean': [9, 9, 8, 9, 8],
'std': [0.5, 0.5, 0.5, 0.5, 0.5]
},
'Captain Marvel': {
'mean': [10, 9, 7, 10, 10],
'std': [0.5, 0.5, 0.5, 0.5, 0.5]
},
'Vedova Nera': {
'mean': [5, 7, 8, 6, 2],
'std': [0.5, 0.5, 0.5, 0.5, 0.5]
},
'Tempesta': {
'mean': [6, 7, 8, 6, 9],
'std': [0.5, 0.5, 0.5, 0.5, 0.5]
},
'Supergirl': {
'mean': [10, 10, 8, 10, 9],
'std': [0.5, 0.5, 0.5, 0.5, 0.5]
},
}
# Generate synthetic data for each superhero with non-linear relationships
for idx, hero in enumerate(superheroes):
start = idx * N_per_class
end = (idx + 1) * N_per_class
means = superhero_stats[hero]['mean']
stds = superhero_stats[hero]['std']
X_hero = np.random.normal(means, stds, (N_per_class, D))
# Ensure feature values are within reasonable ranges before computing interaction
X_hero = np.clip(X_hero, 1, 10)
# Introduce non-linear feature interactions
interaction_term = np.sin(X_hero[:, 1]) * np.log(X_hero[:, 4]) # Interaction between Speed and Energy Projection
X_hero = np.hstack((X_hero, interaction_term.reshape(-1, 1)))
X[start:end] = X_hero
y[start:end] = idx
# Ensure all feature values are within reasonable ranges
X[:, :D] = np.clip(X[:, :D], 1, 10)
# Shuffle the dataset
X, y = shuffle(X, y, random_state=42)
# Normalize the features
scaler = StandardScaler()
X = scaler.fit_transform(X)
# Split data into training and test sets
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42)
# Convert data to torch tensors
X_train_tensor = torch.from_numpy(X_train).float()
y_train_tensor = torch.from_numpy(y_train).long()
X_test_tensor = torch.from_numpy(X_test).float()
y_test_tensor = torch.from_numpy(y_test).long()
# Random prediction function
def random_prediction(X):
num_samples = X.shape[0]
random_preds = np.random.randint(num_classes, size=num_samples)
return random_preds
# Random prediction and evaluation
random_preds = random_prediction(X_test)
random_accuracy = (random_preds == y_test).sum() / y_test.size
# Define Linear Model
class LinearModel(nn.Module):
def __init__(self, input_dim, output_dim):
super(LinearModel, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.linear(x)
# Initialize Linear Model
input_dim = total_features
output_dim = num_classes
linear_model = LinearModel(input_dim, output_dim)
# Loss and optimizer for Linear Model
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(linear_model.parameters(), lr=0.01, weight_decay=1e-4)
# Training the Linear Model
num_epochs = 1#00
for epoch in range(num_epochs):
linear_model.train()
outputs = linear_model(X_train_tensor)
loss = criterion(outputs, y_train_tensor)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch + 1) % 25 == 0:
st.write('Modello Lineare - Epoch [{}/{}], Loss: {:.4f}'.format(
epoch + 1, num_epochs, loss.item()))
# Evaluate Linear Model
linear_model.eval()
with torch.no_grad():
outputs = linear_model(X_test_tensor)
_, predicted = torch.max(outputs.data, 1)
linear_accuracy = (predicted == y_test_tensor).sum().item() / y_test_tensor.size(0)
# Define Neural Network Model with regularization
class NeuralNet(nn.Module):
def __init__(self, input_dim, hidden_dims, output_dim):
super(NeuralNet, self).__init__()
layers = []
in_dim = input_dim
for h_dim in hidden_dims:
layers.append(nn.Linear(in_dim, h_dim))
layers.append(nn.ReLU())
layers.append(nn.BatchNorm1d(h_dim))
layers.append(nn.Dropout(0.3))
in_dim = h_dim
layers.append(nn.Linear(in_dim, output_dim))
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
# Initialize Neural Network Model
hidden_dims = [128, 64, 32]
neural_model = NeuralNet(input_dim, hidden_dims, output_dim)
# Loss and optimizer for Neural Network Model
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(neural_model.parameters(), lr=0.001, weight_decay=1e-4)
# Training the Neural Network Model
num_epochs = 200
for epoch in range(num_epochs):
neural_model.train()
outputs = neural_model(X_train_tensor)
loss = criterion(outputs, y_train_tensor)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch + 1) % 20 == 0:
st.write('Rete Neurale - Epoch [{}/{}], Loss: {:.4f}'.format(
epoch + 1, num_epochs, loss.item()))
# Evaluate Neural Network Model
neural_model.eval()
with torch.no_grad():
outputs = neural_model(X_test_tensor)
_, predicted = torch.max(outputs.data, 1)
neural_accuracy = (predicted == y_test_tensor).sum().item() / y_test_tensor.size(0)
# Summary of Accuracies
st.write("\nRiepilogo delle Accuratezze:....")
st.error('Accuratezza Previsione Casuale: {:.2f}%'.format(100 * random_accuracy))
st.warning('Accuratezza Modello Lineare: {:.2f}%'.format(100 * linear_accuracy))
st.success('Accuratezza Rete Neurale: {:.2f}%'.format(100 * neural_accuracy))
return linear_model, neural_model, scaler, superheroes, num_classes
def get_user_input_and_predict_female_superhero(linear_model, neural_model, scaler, superheroes, num_classes):
st.write("Adjust the sliders for the following superhero attributes on a scale from 1 to 10:")
# Feature names corresponding to superhero attributes
feature_names = ['Forza', 'Velocità', 'Intelligenza', 'Resistenza', 'Proiezione di Energia']
# Initialize or retrieve user input from session state to preserve the values across reruns
if 'user_features' not in st.session_state:
st.session_state.user_features = [5] * len(feature_names) # Default slider values set to 5
# Create a form to group sliders and button
with st.form(key='superhero_form'):
for i, feature in enumerate(feature_names):
st.session_state.user_features[i] = st.slider(
feature, 1, 10, st.session_state.user_features[i], key=f'slider_{i}'
)
# Form submission button
submit_button = st.form_submit_button(label='Calcola Previsioni')
# Proceed with prediction if the form is submitted
if submit_button:
# Copy user input values (superhero attributes)
user_features = st.session_state.user_features.copy()
# Calculate interaction term (interaction between Speed and Energy Projection)
interaction_term = np.sin(user_features[1]) * np.log(user_features[4])
# Append the interaction term to the original features
user_features.append(interaction_term)
# Convert to numpy array and reshape to match the expected input shape
user_features = np.array(user_features).reshape(1, -1)
# Normalize user inputs using the scaler that was fit during training
user_features_scaled = scaler.transform(user_features)
# Convert the scaled input into a torch tensor
user_tensor = torch.from_numpy(user_features_scaled).float()
# Make a random prediction for comparison
random_pred = np.random.randint(num_classes)
st.error(f"Previsione Casuale: {superheroes[random_pred]}")
# **Linear Model Prediction**
linear_model.eval() # Set model to evaluation mode
with torch.no_grad():
outputs = linear_model(user_tensor)
_, predicted = torch.max(outputs.data, 1)
linear_pred = predicted.item()
st.warning(f"Previsione Modello Lineare: {superheroes[linear_pred]}")
# **Neural Network Prediction**
neural_model.eval() # Set model to evaluation mode
with torch.no_grad():
outputs = neural_model(user_tensor)
_, predicted = torch.max(outputs.data, 1)
neural_pred = predicted.item()
st.success(f"Previsione Rete Neurale: {superheroes[neural_pred]}")