Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -3,14 +3,23 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
3 |
import torch
|
4 |
import os
|
5 |
|
6 |
-
# Retrieve the token
|
7 |
api_token = os.getenv("HF_TOKEN").strip()
|
8 |
|
9 |
-
#
|
10 |
model_name = "ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1"
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=api_token)
|
12 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, use_auth_token=api_token)
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
# Define the function to process user input
|
|
|
3 |
import torch
|
4 |
import os
|
5 |
|
6 |
+
# Retrieve the token from environment variables
|
7 |
api_token = os.getenv("HF_TOKEN").strip()
|
8 |
|
9 |
+
# Model name
|
10 |
model_name = "ContactDoctor/Bio-Medical-MultiModal-Llama-3-8B-V1"
|
|
|
|
|
11 |
|
12 |
+
# Load the Hugging Face model and tokenizer with required arguments
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
14 |
+
model_name,
|
15 |
+
use_auth_token=api_token, # Authenticate with Hugging Face token
|
16 |
+
trust_remote_code=True # Allow custom code from the repository
|
17 |
+
)
|
18 |
+
model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
model_name,
|
20 |
+
use_auth_token=api_token, # Authenticate with Hugging Face token
|
21 |
+
trust_remote_code=True # Allow custom code from the repository
|
22 |
+
)
|
23 |
|
24 |
|
25 |
# Define the function to process user input
|