File size: 5,924 Bytes
c8318dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import logging
import os
import time

import matplotlib.pyplot as plt
import numpy as np
import torch
import torchaudio

import hubert_model
import utils
from models import SynthesizerTrn
from preprocess_wave import FeatureInput

logging.getLogger('matplotlib').setLevel(logging.WARNING)
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def timeit(func):
    def run(*args, **kwargs):
        t = time.time()
        res = func(*args, **kwargs)
        print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
        return res

    return run


def get_end_file(dir_path, end):
    file_lists = []
    for root, dirs, files in os.walk(dir_path):
        files = [f for f in files if f[0] != '.']
        dirs[:] = [d for d in dirs if d[0] != '.']
        for f_file in files:
            if f_file.endswith(end):
                file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
    return file_lists


def load_model(model_path, config_path):
    # 获取模型配置
    hps_ms = utils.get_hparams_from_file(config_path)
    n_g_ms = SynthesizerTrn(
        178,
        hps_ms.data.filter_length // 2 + 1,
        hps_ms.train.segment_size // hps_ms.data.hop_length,
        n_speakers=hps_ms.data.n_speakers,
        **hps_ms.model)
    _ = utils.load_checkpoint(model_path, n_g_ms, None)
    _ = n_g_ms.eval().to(dev)
    # 加载hubert
    hubert_soft = hubert_model.hubert_soft(get_end_file("./", "pt")[0])
    feature_input = FeatureInput(hps_ms.data.sampling_rate, hps_ms.data.hop_length)
    return n_g_ms, hubert_soft, feature_input, hps_ms


def resize2d_f0(x, target_len):
    source = np.array(x)
    source[source < 0.001] = np.nan
    target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
                       source)
    res = np.nan_to_num(target)
    return res


def get_units(in_path, hubert_soft):
    source, sr = torchaudio.load(in_path)
    source = torchaudio.functional.resample(source, sr, 16000)
    if len(source.shape) == 2 and source.shape[1] >= 2:
        source = torch.mean(source, dim=0).unsqueeze(0)
    source = source.unsqueeze(0).to(dev)
    with torch.inference_mode():
        units = hubert_soft.units(source)
        return units


def transcribe(source_path, length, transform, feature_input):
    feature_pit = feature_input.compute_f0(source_path)
    feature_pit = feature_pit * 2 ** (transform / 12)
    feature_pit = resize2d_f0(feature_pit, length)
    coarse_pit = feature_input.coarse_f0(feature_pit)
    return coarse_pit


def get_unit_pitch(in_path, tran, hubert_soft, feature_input):
    soft = get_units(in_path, hubert_soft).squeeze(0).cpu().numpy()
    input_pitch = transcribe(in_path, soft.shape[0], tran, feature_input)
    return soft, input_pitch


def clean_pitch(input_pitch):
    num_nan = np.sum(input_pitch == 1)
    if num_nan / len(input_pitch) > 0.9:
        input_pitch[input_pitch != 1] = 1
    return input_pitch


def plt_pitch(input_pitch):
    input_pitch = input_pitch.astype(float)
    input_pitch[input_pitch == 1] = np.nan
    return input_pitch


def f0_to_pitch(ff):
    f0_pitch = 69 + 12 * np.log2(ff / 440)
    return f0_pitch


def f0_plt(in_path, out_path, tran, hubert_soft, feature_input):
    s1, input_pitch = get_unit_pitch(in_path, tran, hubert_soft, feature_input)
    s2, output_pitch = get_unit_pitch(out_path, 0, hubert_soft, feature_input)
    plt.clf()
    plt.plot(plt_pitch(input_pitch), color="#66ccff")
    plt.plot(plt_pitch(output_pitch), color="orange")
    plt.savefig("temp.jpg")


def calc_error(in_path, out_path, tran, feature_input):
    input_pitch = feature_input.compute_f0(in_path)
    output_pitch = feature_input.compute_f0(out_path)
    sum_y = []
    if np.sum(input_pitch == 0) / len(input_pitch) > 0.9:
        mistake, var_take = 0, 0
    else:
        for i in range(min(len(input_pitch), len(output_pitch))):
            if input_pitch[i] > 0 and output_pitch[i] > 0:
                sum_y.append(abs(f0_to_pitch(output_pitch[i]) - (f0_to_pitch(input_pitch[i]) + tran)))
        num_y = 0
        for x in sum_y:
            num_y += x
        len_y = len(sum_y) if len(sum_y) else 1
        mistake = round(float(num_y / len_y), 2)
        var_take = round(float(np.std(sum_y, ddof=1)), 2)
    return mistake, var_take


def infer(source_path, speaker_id, tran, net_g_ms, hubert_soft, feature_input):
    sid = torch.LongTensor([int(speaker_id)]).to(dev)
    soft, pitch = get_unit_pitch(source_path, tran, hubert_soft, feature_input)
    pitch = torch.LongTensor(clean_pitch(pitch)).unsqueeze(0).to(dev)
    stn_tst = torch.FloatTensor(soft)
    with torch.no_grad():
        x_tst = stn_tst.unsqueeze(0).to(dev)
        x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
        audio = \
            net_g_ms.infer(x_tst, x_tst_lengths, pitch, sid=sid, noise_scale=0.3, noise_scale_w=0.5,
                           length_scale=1)[0][
                0, 0].data.float().cpu().numpy()
    return audio, audio.shape[-1]


def del_temp_wav(path_data):
    for i in get_end_file(path_data, "wav"):  # os.listdir(path_data)#返回一个列表,里面是当前目录下面的所有东西的相对路径
        os.remove(i)


def format_wav(audio_path, tar_sample):
    raw_audio, raw_sample_rate = torchaudio.load(audio_path)
    if len(raw_audio.shape) == 2 and raw_audio.shape[1] >= 2:
        raw_audio = torch.mean(raw_audio, dim=0).unsqueeze(0)
    tar_audio = torchaudio.functional.resample(raw_audio, raw_sample_rate, tar_sample)
    torchaudio.save(audio_path[:-4] + ".wav", tar_audio, tar_sample)
    return tar_audio, tar_sample


def fill_a_to_b(a, b):
    if len(a) < len(b):
        for _ in range(0, len(b) - len(a)):
            a.append(a[0])


def mkdir(paths: list):
    for path in paths:
        if not os.path.exists(path):
            os.mkdir(path)