File size: 12,101 Bytes
59d1291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09ac631
 
2ba098a
09ac631
 
 
 
 
 
 
0126820
 
 
 
59d1291
 
 
 
503abb3
 
59d1291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dfef10
 
 
 
 
 
59d1291
9dfef10
 
 
 
 
 
 
59d1291
9dfef10
 
 
 
 
 
 
 
 
59d1291
 
 
9dfef10
59d1291
9dfef10
59d1291
9dfef10
59d1291
 
9dfef10
59d1291
 
 
9dfef10
59d1291
9dfef10
 
 
59d1291
 
 
9dfef10
 
59d1291
9dfef10
59d1291
 
 
 
9dfef10
59d1291
9dfef10
 
 
 
59d1291
 
9dfef10
 
 
59d1291
9dfef10
59d1291
 
9dfef10
59d1291
9dfef10
 
 
59d1291
 
 
9dfef10
59d1291
9dfef10
 
59d1291
 
 
 
9dfef10
59d1291
 
 
 
9dfef10
59d1291
 
 
 
9dfef10
59d1291
9dfef10
59d1291
9dfef10
59d1291
 
 
9dfef10
59d1291
9dfef10
59d1291
 
9dfef10
59d1291
 
9dfef10
59d1291
9dfef10
 
59d1291
9dfef10
59d1291
9dfef10
59d1291
 
 
9dfef10
59d1291
9dfef10
59d1291
9dfef10
59d1291
9dfef10
59d1291
9dfef10
59d1291
9dfef10
 
 
59d1291
9dfef10
59d1291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f00d2b6
59d1291
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# -*- coding: utf-8 -*-
"""Deployment.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1RtXMnveLECPLSum0IJcSGtQTk1pGRjNE

# Proof of Concept:

Breakdown:

1. One must first load the dataset that our group created on Mockaroo based on the guidelines given to us by the client. This dataset models a food delivery business that has 4 tables: Driver, Customer, Orders and Customer support. Each table has various types of data spanning from strings, ints to unique ids. Tables are linked by ids as well. 

2. Using the textblob library, we run spell checking on the user input in order to avoid any query generation issues due to misspelt words. 

3. We use spacy in order to run named entity recognition; these entities will be used in step 4.

4. Using the named entities and a list of unique values from the dataset, we use tensorflow embeddings and cosine similarity to find the column value most likely being referenced in the user's query. For instance, an input of San Francisco Jail would have a strong cosine similarity with the actual value from the client's column: San Francisco Penitentiary. After the correct name has been found we use regex to substitute the corrected name in place of the user input. 

5. Finally, we do the actual query translation from plain text. We first input the formatted query and send it to openai that has already been fed the schema for the query. We then receive the SQL query and call our own hand-crafted SQL-to-MongoDB method that converts into a final MongoDB query. 

### User Instructions

For the code to function, you need to load the four datasets (driver_data, cust_data, order_data, cust_service_data) from the github repo into your google drive as outlined in the following cells. 

Our main method first asks the user for their openai key. Then we have some test cases that may contain noun spelling issues, name spelling issues, etc.
"""

"""### **Attention**: Upload all four datasets into your MyDrive directory in google drive"""

import pandas as pd
import spacy
import en_core_web_sm
import tensorflow_hub as hub
from scipy.spatial import distance
from numpy.core.fromnumeric import argmax
import openai
import re
import gradio as gr

driver = pd.read_csv('driver_data.csv')
customer = pd.read_csv('customer_data.csv')
order = pd.read_csv('order_data.csv')
service = pd.read_csv('cust_service_data.csv')

"""# Entity Extraction"""

# extract entities, label, label definition from natural language questions and append to dataframe

nlp = spacy.load("en_core_web_sm")
def EntityExtraction(text:str):
  # print(text)
  entities = []
  entities_label = []
  label_explanation = {}
  doc = nlp(text)
  for entity in doc.ents:
    entities.append(entity.text)
    entities_label.append(entity.label_)
    label_explanation[entity.label_] = spacy.explain(entity.label_)
  return entities, entities_label

"""# Column Cosine Similarity"""

#creating a dictionary of unique values in the dataset
#Used for cosine similarity
unique_values = {}

for column in driver:
    unique_values[column] = driver[column].unique()

for column in customer:
    unique_values[column] = customer[column].unique()

for column in order:
    if column in ['cust_id', 'driver_id']:
        unique_values[column] = order[column].unique()

unique_values['sales_id'] = service['sales_id'].unique()

embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4")

# Uses TF word embeddings to find the word/phrase in words[1:] most related
# to words[0] 
def ClosestSimilarity(words):
  embeddings = embed(words)

  similarities = [1 - distance.cosine(embeddings[0],x) for x in embeddings[1:]]

  return max(similarities), argmax(similarities)

def find_column(item, array = unique_values):

    best_similarity = 0
    best_item = None
    best_key = None

    for key in array:
        values = [str(x) for x in unique_values[key]]
        values = [item] + values
        max_similarity, item_similar = ClosestSimilarity(values)
        if not best_similarity or max_similarity > best_similarity:

            best_similarity = max_similarity
            best_item = unique_values[key][item_similar]
            best_key = key

    if best_similarity < 0.2:

        return best_key, item
    return best_key, best_item

"""# Query to SQL to MongoDB"""

def query_to_SQL_to_MongoDB(query, key, organization):

    
    openai.api_key = key # put in the unique key
    openai.organization = organization # sets the specific parameters of the openai var

    response = openai.Completion.create( # use the appropriate SQL model and set the parameters accordingly 
        model="text-davinci-003",
        prompt="### Postgres SQL tables, with their properties:\n#\n# Customer_Support(sales_id, order_id, date)\n# Driver(driver_id, driver_name, driver_address, driver_experience)\n# Customer(cust_id, cust_name, cust_address)\n# Orders(order_id, cust_id, driver_id, date, amount)\n#\n### A query to " + query + ".\nSELECT",
        temperature=0,
        max_tokens=150,
        top_p=1.0,
        frequency_penalty=0.0,
        presence_penalty=0.0,
        stop=["#", ";"]
    )

    SQL = response['choices'][0]['text'] # extract the outputted SQL Query
    return complex_SQL_to_MongoDB(SQL)



def complex_SQL_to_MongoDB(query):

    keywords = {'INNER', 'FROM', 'WHERE', 'GROUP', 'BY', 'ON', 'SELECT', 'BETWEEN', 'LIMIT', 'AND', 'ORDER'} # keyword set used by my MongoDB function
    mapper = {} # maps SQL symbols to MongoDB functions
    mapper['<'] = '$lt'
    mapper['>'] = '$gt'
    mapper['!='] = '$ne'

    query = re.split(r' |\n', query) # split the query on spaces and turn in to array
    query = [ x for x in query if len(x) > 0] # remove empty strings in the array

    while query[0][:3] not in ['MAX', 'MIN'] and query[0][:5] != 'COUNT' and query[0] not in keywords:

        query = query[1:]

    if query[1] == 'AS':

        rename = query[2]
        
        for i in range(3, len(query)):

            if query[i] == rename:

                query[i] = query[0]

    if len(query[0]) > 3 and (query[0][:3] == 'MAX' or query[0][:3] == 'MIN'): # if the SQL contains a MAX or MIN select then we rewrite the SQL query in an easier format
        
        query += ['ORDER', 'BY', query[0][4:-1], 'DESC' if query[0][:3] == 'MAX' else 'ASC', 'LIMIT', '1']

    count_str = '' # builds a MongoDB statement if there is a count in the select statement

    if len(query[0]) > 5 and query[0][:5] == 'COUNT': # if there is indeed a count

        count_str += ' {$count : ' # construct the count sequence
        if query[0][6] == '*':

            count_str += '{} }' # an asterisk means everything

        else:

            count_str += query[0][6:-1] + ' }' # otherwise write the actual field it wants

    count_str += ','
    i = 0 # iterator variable
    while query[i] != 'FROM': # as long as we are still in the select continue because you cannot do select in db.Aggregate

        i += 1

    i = i +1 # ignore the FROM
    collection = query[i] # table from which the information will be taken
    i = i + 1
    if i < len(query) and query[i] not in keywords: # sometimes SQL queries rename tables but we ignore that in MongoDB

        i += 1
    answer = 'db.' + collection + ".aggregate( " # MongoDB function for aggregation

    while i < len(query) and query[i] == 'INNER': # if there is an inner join

        i = i + 2 # ignore the keywords
        lookup = '{$lookup: { from : "' # MongoDB structure
        lookup += query[i] + '", localField: "' # specifies home key
        if query[i+1] not in keywords: # skip renaming of tables
            i += 1
        i = i + 2
        lookup += query[i].split('.')[1] + '", foreignField: "' # specifies foreign key
        i = i+2 
        lookup += query[i].split('.')[1] + '", as: "' + collection + '"} },' # rename final table to the original table
        i = i + 1
        answer += lookup # add this to the MongoDB query


    if i < len(query) and query[i] == 'WHERE': # if there is a WHERE clause

        where = '{$match:' # MongoB keyword
        count = 0 # tells us if there is an AND in the where clause
        conditions = '' # stores the actual conditions required

        while i < len(query) and (query[i] == 'WHERE' or query[i] == 'AND'):

            count += 1 # add one every time you find a where matching
            i = i+1 
            conditions += '{' + (query[i].split('.')[1] if len(query[i].split('.')) > 1 else query[i] )  + " : " # format to MongoDB
            if query[i+1] == '=': # if there is an equality then use a colon

                conditions += query[i+2] 
                i = i + 3

            elif query[i+1] == 'BETWEEN': # if there are dates then use the specified date format

                conditions += '{$gt: ISODate(' + query[i+2] + '), $lt: ISODate(' + query[i+4] + ')}'
                i+= 5
                
            else: # else use the mapper function to map the write symbol here
                
                conditions += '{ ' + mapper[query[i+1]] + ' : ' + query[i+2] + ' }'
                i = i+3

            conditions += '},' # end the conditions

        if count > 1: # if you have been in there for more than once then 

            where += '{ $and: [' + conditions[:-1] + ']}}' # use the AND version of MongoDB

        else:
            
            where += conditions[:-1] + '},' # otherwise end the clause

        answer += where # add this to the final query


    if i < len(query) and (query[i] == 'GROUP' or query[i] == 'ORDER'): # if there is a Group BY or Order BY

        i = i + 2
        group = '{$group: { _id: "' + query[i] + '"' # in any case, you use group in MongoDB
        i += 1
        i -= 3 if query[i -3 ] == 'ORDER' else 0 # depending on which one you continue
        if i < len(query) and query[i] == 'ORDER' and len(query[i+2]) > 5 and query[i+2][0:5] == 'COUNT': # if there is an order by with count
             
            group += ', count: {$count: ' + ('{}' if query[i+2].split('(')[1][:-1] == '*' else ('{' + query[i+2].split('(')[1][:-1].split('.')[1] + '}') ) + '} }}, { $sort: {count : ' + ('1' if query[i+3] == 'ASC' else '-1') + '}},'
             
        elif i < len(query) and query[i] == 'ORDER': # if there is an order by without count

            group += '} }, { $sort: {' + query[i+2] + ' : ' + ('1' if query[i+3] == 'ASC' else '-1') + '}},'

        else:group += '} },' # if there is no orde by and only group

        i += 4

        answer += group # add answer to group

    if i < len(query) and query[i] == 'LIMIT': # if there is a limit then add that too

        answer += '{ $limit : ' + query[i+1] + ' },'

    answer += '' if count_str == ',' else count_str# finally add back any count command
    answer = answer[:-1]
    answer += ')' # end the whole query

    return answer # return


"""# Main method"""

def query_creator(key, organization, plain_query):
  # find named entities in text, e.g. names, addresses, etc.
  plain_query = correctSpelling(plain_query)
  entities, entities_label = EntityExtraction(plain_query)
  modified_query = plain_query
  
  #print(entities)
  #print(entities_label)
  #For each named entity in the query
  for i in range(len(entities)):

    if entities_label[i] in ['ORDINAL', 'CARDINAL']:
        continue
    #Use cosine similarity on each entity to find closest matching string from tables.
    col, best_match = find_column(entities[i])
    #substitute table string in place of partial match found in previous step
    modified_query = re.sub(entities[i],best_match,modified_query)

  print("Modified input: ", modified_query)
  #Convert adjusted plain text query to SQL, then MongoDB
  MongoDB_query = query_to_SQL_to_MongoDB(modified_query, key, organization)
  return MongoDB_query



iface = gr.Interface(fn=query_creator, inputs= [gr.Textbox(label = "API Key"), gr.Textbox(label = "Organization Key"),  gr.Textbox(label = "Plain Text Query")], outputs=gr.Textbox(label = "MongoDB Query"), )
iface.launch()