Spaces:
Sleeping
Sleeping
Dan Foley
commited on
Delete app.py
Browse files
app.py
DELETED
@@ -1,213 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
from typing import List
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
8 |
-
|
9 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
-
|
11 |
-
from langchain.vectorstores import Chroma
|
12 |
-
|
13 |
-
from langchain.chains import (
|
14 |
-
|
15 |
-
ConversationalRetrievalChain,
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
from langchain.chat_models import ChatOpenAI
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
from langchain.docstore.document import Document
|
24 |
-
|
25 |
-
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
import chainlit as cl
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
@cl.on_chat_start
|
44 |
-
|
45 |
-
async def on_chat_start():
|
46 |
-
|
47 |
-
files = None
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
# Wait for the user to upload a file
|
52 |
-
|
53 |
-
while files == None:
|
54 |
-
|
55 |
-
files = await cl.AskFileMessage(
|
56 |
-
|
57 |
-
content="Please upload a text file to begin!",
|
58 |
-
|
59 |
-
accept=["text/plain"],
|
60 |
-
|
61 |
-
max_size_mb=20,
|
62 |
-
|
63 |
-
timeout=180,
|
64 |
-
|
65 |
-
).send()
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
file = files[0]
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
msg = cl.Message(content=f"Processing `{file.name}`...")
|
74 |
-
|
75 |
-
await msg.send()
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
with open(file.path, "r", encoding="utf-8") as f:
|
80 |
-
|
81 |
-
text = f.read()
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
# Split the text into chunks
|
86 |
-
|
87 |
-
texts = text_splitter.split_text(text)
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
# Create a metadata for each chunk
|
92 |
-
|
93 |
-
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
# Create a Chroma vector store
|
98 |
-
|
99 |
-
embeddings = OpenAIEmbeddings()
|
100 |
-
|
101 |
-
docsearch = await cl.make_async(Chroma.from_texts)(
|
102 |
-
|
103 |
-
texts, embeddings, metadatas=metadatas
|
104 |
-
|
105 |
-
)
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
message_history = ChatMessageHistory()
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
memory = ConversationBufferMemory(
|
114 |
-
|
115 |
-
memory_key="chat_history",
|
116 |
-
|
117 |
-
output_key="answer",
|
118 |
-
|
119 |
-
chat_memory=message_history,
|
120 |
-
|
121 |
-
return_messages=True,
|
122 |
-
|
123 |
-
)
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
# Create a chain that uses the Chroma vector store
|
128 |
-
|
129 |
-
chain = ConversationalRetrievalChain.from_llm(
|
130 |
-
|
131 |
-
ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True),
|
132 |
-
|
133 |
-
chain_type="stuff",
|
134 |
-
|
135 |
-
retriever=docsearch.as_retriever(),
|
136 |
-
|
137 |
-
memory=memory,
|
138 |
-
|
139 |
-
return_source_documents=True,
|
140 |
-
|
141 |
-
)
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
# Let the user know that the system is ready
|
146 |
-
|
147 |
-
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
|
148 |
-
|
149 |
-
await msg.update()
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
cl.user_session.set("chain", chain)
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
@cl.on_message
|
160 |
-
|
161 |
-
async def main(message: cl.Message):
|
162 |
-
|
163 |
-
chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain
|
164 |
-
|
165 |
-
cb = cl.AsyncLangchainCallbackHandler()
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
res = await chain.acall(message.content, callbacks=[cb])
|
170 |
-
|
171 |
-
answer = res["answer"]
|
172 |
-
|
173 |
-
source_documents = res["source_documents"] # type: List[Document]
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
text_elements = [] # type: List[cl.Text]
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
if source_documents:
|
182 |
-
|
183 |
-
for source_idx, source_doc in enumerate(source_documents):
|
184 |
-
|
185 |
-
source_name = f"source_{source_idx}"
|
186 |
-
|
187 |
-
# Create the text element referenced in the message
|
188 |
-
|
189 |
-
text_elements.append(
|
190 |
-
|
191 |
-
cl.Text(content=source_doc.page_content, name=source_name, display="side")
|
192 |
-
|
193 |
-
)
|
194 |
-
|
195 |
-
source_names = [text_el.name for text_el in text_elements]
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
if source_names:
|
200 |
-
|
201 |
-
answer += f"\nSources: {', '.join(source_names)}"
|
202 |
-
|
203 |
-
else:
|
204 |
-
|
205 |
-
answer += "\nNo sources found"
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
await cl.Message(content=answer, elements=text_elements).send()
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|