Spaces:
Sleeping
Sleeping
File size: 6,390 Bytes
4c983c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import streamlit as st
import sparknlp
import os
import pandas as pd
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from sparknlp.pretrained import PretrainedPipeline
from annotated_text import annotated_text
# Page configuration
st.set_page_config(
layout="wide",
initial_sidebar_state="auto"
)
# CSS for styling
st.markdown("""
<style>
.main-title {
font-size: 36px;
color: #4A90E2;
font-weight: bold;
text-align: center;
}
.section {
background-color: #f9f9f9;
padding: 10px;
border-radius: 10px;
margin-top: 10px;
}
.section p, .section ul {
color: #666666;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def init_spark():
return sparknlp.start()
@st.cache_resource
def create_pipeline(model):
document_assembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
sentence_detector = SentenceDetector() \
.setInputCols(["document"]) \
.setOutputCol("sentence")
word_segmenter = WordSegmenterModel.pretrained("wordseg_kaist_ud", "ko") \
.setInputCols(["sentence"]) \
.setOutputCol("token")
embeddings = WordEmbeddingsModel.pretrained("glove_840B_300", "xx") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")
ner = NerDLModel.pretrained("ner_kmou_glove_840B_300d", "ko") \
.setInputCols(["document", "token", "embeddings"]) \
.setOutputCol("ner")
ner_converter = NerConverter().setInputCols(["document", "token", "ner"]).setOutputCol("ner_chunk")
pipeline = Pipeline(stages=[document_assembler, sentence_detector, word_segmenter, embeddings, ner, ner_converter])
return nlpPipeline
def fit_data(pipeline, data):
empty_df = spark.createDataFrame([['']]).toDF('text')
pipeline_model = pipeline.fit(empty_df)
model = LightPipeline(pipeline_model)
result = model.fullAnnotate(data)
return result
def annotate(data):
document, chunks, labels = data["Document"], data["NER Chunk"], data["NER Label"]
annotated_words = []
for chunk, label in zip(chunks, labels):
parts = document.split(chunk, 1)
if parts[0]:
annotated_words.append(parts[0])
annotated_words.append((chunk, label))
document = parts[1]
if document:
annotated_words.append(document)
annotated_text(*annotated_words)
# Set up the page layout
st.markdown('<div class="main-title">Recognize entities in Urdu text</div>', unsafe_allow_html=True)
st.markdown("""
<div class="section">
<p>This model uses the pre-trained <code>glove_840B_300</code> embeddings model from WordEmbeddings annotator as an input</p>
</div>
""", unsafe_allow_html=True)
# Sidebar content
model = st.sidebar.selectbox(
"Choose the pretrained model",
["ner_kmou_glove_840B_300d"],
help="For more info about the models visit: https://sparknlp.org/models"
)
# Reference notebook link in sidebar
link = """
<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/public/NER_KO.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
</a>
"""
st.sidebar.markdown('Reference notebook:')
st.sidebar.markdown(link, unsafe_allow_html=True)
# Load examples
examples = [
"""ARD , ZDF λ± κ³΅μ TV μ λ°μ΄μλ₯Έμ£Ό λ°©μ‘ , λΆλΆ λ
μΌ λ°©μ‘ λ± μ μ΄ λ νκ΅ μ μ΄μ μμ κ³Ό κ΄λ ¨ , μ¬λΉ μ κ³Όλ°μ μμ ν보 μ μ λΉ μ λν μ¨ μ΄ μ΄λ² μ κ±° μ μ΅λ κ΄μ¬μ¬ μ΄ λΌκ³ 보λ ν γ΄ λ° μ μ΄ μ λ
μκ° λΆν° λ μ μ°¨λ‘ μ κ±ΈμΉ μ΄ κ°ν μν© κ³Ό μ λΉ λ³ μμ μ λ§ μ μ보 λ‘ μ ν μ λ€ .""",
"""λ λλΌ κ΄κ³ λ μ€κ΅ μ μΈκΆ λ¬Έμ μ ν΅νμ° λ°©μ§ λ¬Έμ , ν΅μ λ¬Έμ λ° μ΅κ·Ό μ F 16 μ ν¬κΈ° λ λλ§ νλ§€ λ± μ λ κ³ μ΄λ―Έ μνμ μ μ μ€ μ μ λλ° ν΄λ¦°ν΄ νμ λΆ μ λ±μ₯ μΌλ‘ μκ΅ κ΄κ³ κ° λμ± κ²½μ λ γΉ κ² μ κ±±μ ν λ λΆμκΈ° .""",
"""μμΈλ 건μΆκ³΅ν κ³Ό λ₯Ό μ‘Έμ
ν γ΄ μ΄ μ¨ λ νκ΅κ±΄μΆκ°νν""",
"""λ λ λ€μ μμ λ₯Ό μλ μμ λΉΌλ΄ κΈ° μν μμ μ°½μ νλ""",
"""ν€λΌμ μ μ μ±ν λ γ΄ μ§ λ³΄λ¦ , μ§κ΅¬ μ λ°λ°ν΄ λ₯Ό λ μ μ 주곡ν μ μ²«λ° μ λ΄λλ γ΄ μ΄λ λ‘ μ΄μ΄ν""",
"""λ€μ μ ν콩 μ κΆμμ§ λͺ
보 μ μΌλ³Έ λμΏ ( λκ²½ ) μ λ¬Έ μ΄ 24μΌ""",
"""μ΅ μμ¬ κ° μ°λ¦¬ μΈκ΅κ΄ μ΄ λ©° κ·Έ μ λ³λ³΄νΈ μ±
μ μ΄ μ£Όμ¬κ΅ μ΄ γ΄ λ¬μμ μ μ λ€λ μ μμ λ¬μμ λ μ΄ κ° μ μ°λ¦¬ μ λΆ μꡬ μ μν μμΌ ν γΉ μ무 κ° μ λ€ .""",
"""ν μ λ° μ λ― ν γ΄ κΉ¨λ ν γ΄ κΈμ¨ λ‘ , μ²μ λ¨κ΅° λ μ΄ λ μ λΌ , λ°±μ , κ³ κ΅¬λ € μ΄ λ λμλμ μ΄λ₯Έ λ€ νν
μ κ·κ²° λ‘ λ€μ΄μ€ λ μκΈ° λ€ μ΄ μ°Έλ§ λ‘ μ μ΄ μ μ λ€ ."""
]
selected_text = st.selectbox("Select an example", examples)
custom_input = st.text_input("Try it with your own Sentence!")
text_to_analyze = custom_input if custom_input else selected_text
st.subheader('Full example text')
HTML_WRAPPER = """<div class="scroll entities" style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; margin-bottom: 2.5rem; white-space:pre-wrap">{}</div>"""
st.markdown(HTML_WRAPPER.format(text_to_analyze), unsafe_allow_html=True)
# Initialize Spark and create pipeline
spark = init_spark()
pipeline = create_pipeline(model)
output = fit_data(pipeline, text_to_analyze)
# Display matched sentence
st.subheader("Processed output:")
results = {
'Document': output[0]['document'][0].result,
'NER Chunk': [n.result for n in output[0]['ner_chunk']],
"NER Label": [n.metadata['entity'] for n in output[0]['ner_chunk']]
}
annotate(results)
with st.expander("View DataFrame"):
df = pd.DataFrame({'NER Chunk': results['NER Chunk'], 'NER Label': results['NER Label']})
df.index += 1
st.dataframe(df)
|