abdullahmubeen10's picture
Upload 10 files
4947cdd verified
import streamlit as st
import sparknlp
import os
import pandas as pd
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from sparknlp.pretrained import PretrainedPipeline
from annotated_text import annotated_text
# Page configuration
st.set_page_config(
layout="wide",
page_title="Spark NLP Demos App",
initial_sidebar_state="auto"
)
# CSS for styling
st.markdown("""
<style>
.main-title {
font-size: 36px;
color: #4A90E2;
font-weight: bold;
text-align: center;
}
.section p, .section ul {
color: #666666;
}
.stTable {
margin-left: auto;
margin-right: auto;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def init_spark():
return sparknlp.start()
@st.cache_resource
def create_pipeline(model):
document_assembler = DocumentAssembler() \
.setInputCol('text') \
.setOutputCol('document')
sentence_detector = SentenceDetector() \
.setInputCols(['document']) \
.setOutputCol('sentences')
tokenizer = Tokenizer() \
.setInputCols(['sentences']) \
.setOutputCol('tokens') \
.setContextChars(['(', ')', '?', '!', '.', ','])
keywords = YakeKeywordExtraction() \
.setInputCols('tokens') \
.setOutputCol('keywords') \
.setMinNGrams(2) \
.setMaxNGrams(5) \
.setNKeywords(100) \
.setStopWords(StopWordsCleaner().getStopWords())
pipeline = Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
keywords
])
return pipeline
def fit_data(pipeline, data):
empty_df = spark.createDataFrame([['']]).toDF('text')
pipeline_model = pipeline.fit(empty_df)
model = LightPipeline(pipeline_model)
results = model.fullAnnotate(data)[0]
return results
def highlight_keywords(data):
document_text = data["document"][0].result
keywords = data["keywords"]
annotations = []
last_index = 0
for keyword in keywords:
keyword_text = keyword.result
start_index = document_text.find(keyword_text, last_index)
if start_index != -1:
if start_index > last_index:
annotations.append(document_text[last_index:start_index])
annotations.append((keyword_text, 'Key Word'))
last_index = start_index + len(keyword_text)
if last_index < len(document_text):
annotations.append(document_text[last_index:])
annotated_text(*annotations)
# Set up the page layout
st.markdown('<div class="main-title">Detect Key Phrases With Spark NLP</div>', unsafe_allow_html=True)
# Sidebar content
model = st.sidebar.selectbox(
"Choose the pretrained model",
["yake_model"],
help="For more info about the models visit: https://sparknlp.org/models"
)
# Reference notebook link in sidebar
link = """
<a href="https://colab.research.google.com/github/JohnSnowLabs/spark-nlp-workshop/blob/master/tutorials/streamlit_notebooks/KEYPHRASE_EXTRACTION.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" style="zoom: 1.3" alt="Open In Colab"/>
</a>
"""
st.sidebar.markdown('Reference notebook:')
st.sidebar.markdown(link, unsafe_allow_html=True)
# Load examples
folder_path = f"inputs/{model}"
examples = [
lines[1].strip()
for filename in os.listdir(folder_path)
if filename.endswith('.txt')
for lines in [open(os.path.join(folder_path, filename), 'r', encoding='utf-8').readlines()]
if len(lines) >= 2
]
selected_text = st.selectbox("Select a sample text", examples)
custom_input = st.text_input("Try it for yourself!")
if custom_input:
selected_text = custom_input
elif selected_text:
selected_text = selected_text
st.subheader('Selected Text')
st.write(selected_text)
# Initialize Spark and create pipeline
spark = init_spark()
pipeline = create_pipeline(model)
output = fit_data(pipeline, selected_text)
# Display output
st.subheader("Annotated Document:")
highlight_keywords(output)
keys_df = pd.DataFrame([(k.result, k.begin, k.end, k.metadata['score'], k.metadata['sentence']) for k in output['keywords']],
columns=['keywords', 'begin', 'end', 'score', 'sentence'])
keys_df['score'] = keys_df['score'].astype(float)
# ordered by relevance
with st.expander("View Data Table"):
st.table(keys_df.sort_values(['sentence', 'score']))