Spaces:
Running
Running
New columns and columns visibiity
#4
by
koderfpv
- opened
- .gitignore +1 -0
- README.md +2 -2
- app.py +161 -48
- data.json +125 -125
- requirements.txt +2 -2
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
venv
|
README.md
CHANGED
@@ -4,10 +4,10 @@ emoji: π§ π¦π΅π±ποΈ
|
|
4 |
colorFrom: pink
|
5 |
colorTo: indigo
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
4 |
colorFrom: pink
|
5 |
colorTo: indigo
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.43.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -7,43 +7,70 @@ import plotly.express as px
|
|
7 |
from st_social_media_links import SocialMediaIcons
|
8 |
|
9 |
|
|
|
10 |
RESULTS_COLUMN_NAME = "Results"
|
11 |
AVERAGE_COLUMN_NAME = "Average"
|
12 |
SENTIMENT_COLUMN_NAME = "Sentiment"
|
13 |
UNDERSTANDING_COLUMN_NAME = "Language understanding"
|
14 |
PHRASEOLOGY_COLUMN_NAME = "Phraseology"
|
|
|
|
|
15 |
|
16 |
# Function to load data from JSON file
|
|
|
|
|
17 |
@st.cache_data
|
18 |
def load_data(file_path):
|
19 |
with open(file_path, 'r', encoding='utf-8') as file:
|
20 |
data = json.load(file)
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Function to style the DataFrame
|
|
|
|
|
24 |
@st.cache_data
|
25 |
def style_dataframe(df: pd.DataFrame):
|
26 |
-
df[RESULTS_COLUMN_NAME] = df.apply(lambda row: [
|
27 |
-
|
28 |
cols = list(df.columns)
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
df = df[cols]
|
31 |
# Create a color ramp using Seaborn
|
32 |
return df
|
33 |
|
|
|
34 |
def styler(df: pd.DataFrame):
|
35 |
palette = sns.color_palette("RdYlGn", as_cmap=True)
|
36 |
# Apply reverse color gradient to the "Params" column
|
37 |
-
params_palette = sns.color_palette(
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
43 |
return styled_df
|
44 |
|
45 |
|
46 |
-
|
47 |
st.set_page_config(layout="wide")
|
48 |
|
49 |
st.markdown("""
|
@@ -58,7 +85,7 @@ st.markdown("""
|
|
58 |
</style>
|
59 |
""", unsafe_allow_html=True)
|
60 |
|
61 |
-
|
62 |
|
63 |
st.markdown("""
|
64 |
<style>
|
@@ -87,7 +114,7 @@ st.markdown("""
|
|
87 |
# ----------------------------------------------------------
|
88 |
st.markdown("""<br>""", unsafe_allow_html=True)
|
89 |
|
90 |
-
|
91 |
social_media_links = [
|
92 |
"https://discord.com/invite/ZJwCMrxwT7",
|
93 |
"https://github.com/speakleash",
|
@@ -110,7 +137,8 @@ social_media_links_colors = [
|
|
110 |
links_color
|
111 |
]
|
112 |
|
113 |
-
social_media_icons = SocialMediaIcons(
|
|
|
114 |
social_media_icons.render(justify_content='right')
|
115 |
|
116 |
st.markdown("""
|
@@ -140,23 +168,24 @@ with tab1:
|
|
140 |
|
141 |
# Prepare data
|
142 |
data = load_data('data.json')
|
143 |
-
|
144 |
data['Params'] = pd.to_numeric(
|
145 |
-
|
146 |
-
|
147 |
-
)
|
148 |
data = data.sort_values(by=AVERAGE_COLUMN_NAME, ascending=False)
|
149 |
|
150 |
# Closing filters in a expander
|
151 |
with st.expander("Filtering benchmark data", icon='π'):
|
152 |
# Filtering data, e.g. slider for params, average score, etc.
|
153 |
-
col_filter_params, col_filter_average, col_filter_sentiment, col_filter_understanding, col_filter_phraseology = st.columns(
|
154 |
-
|
|
|
155 |
with col_filter_params:
|
156 |
max_params = data['Params'].max(skipna=True)
|
157 |
if pd.isna(max_params):
|
158 |
max_params = 0.0
|
159 |
-
|
160 |
params_slider = st.slider(
|
161 |
"Models Size [B]",
|
162 |
min_value=0.0,
|
@@ -174,20 +203,40 @@ with tab1:
|
|
174 |
]
|
175 |
|
176 |
with col_filter_average:
|
177 |
-
average_slider = st.slider(
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
with col_filter_sentiment:
|
181 |
-
sentiment_slider = st.slider(
|
182 |
-
|
|
|
|
|
183 |
|
184 |
with col_filter_understanding:
|
185 |
-
understanding_slider = st.slider(
|
186 |
-
|
|
|
|
|
187 |
|
188 |
with col_filter_phraseology:
|
189 |
-
phraseology_slider = st.slider(
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
# Extract unique provider names from the "Model" column
|
193 |
providers = data["Model"].apply(lambda x: x.split('/')[0].lower()).unique()
|
@@ -195,31 +244,92 @@ with tab1:
|
|
195 |
# Filter data based on selected providers
|
196 |
data = data[data["Model"].apply(lambda x: x.split('/')[0].lower()).isin(selected_providers)]
|
197 |
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
styled_df_show = style_dataframe(data)
|
200 |
styled_df_show = styler(styled_df_show)
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
"Bar chart of results", help="Summary of the results of each task",
|
208 |
-
y_min=0,y_max=5
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
# Add selection for models and create a bar chart for selected models using the AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME, PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME
|
215 |
# Add default selection of 3 best models from AVERAGE_COLUMN_NAME and 1 best model with "Bielik" in Model column
|
216 |
-
default_models = list(data.sort_values(
|
217 |
-
|
|
|
|
|
218 |
if bielik_model not in default_models:
|
219 |
default_models.append(bielik_model)
|
220 |
-
selected_models = st.multiselect(
|
|
|
221 |
selected_data = data[data["Model"].isin(selected_models)]
|
222 |
-
categories = [AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME,
|
|
|
223 |
|
224 |
if selected_models:
|
225 |
# Kolorki do wyboru:
|
@@ -228,7 +338,8 @@ with tab1:
|
|
228 |
|
229 |
fig_bars = go.Figure()
|
230 |
for model, color in zip(selected_models, colors):
|
231 |
-
values = selected_data[selected_data['Model'] ==
|
|
|
232 |
fig_bars.add_trace(go.Bar(
|
233 |
x=categories,
|
234 |
y=values,
|
@@ -239,7 +350,8 @@ with tab1:
|
|
239 |
# Update layout to use a custom color scale
|
240 |
fig_bars.update_layout(
|
241 |
showlegend=True,
|
242 |
-
legend=dict(orientation="h", yanchor="top",
|
|
|
243 |
title="Comparison of Selected Models",
|
244 |
yaxis_title="Score",
|
245 |
template="plotly_dark"
|
@@ -248,7 +360,7 @@ with tab1:
|
|
248 |
st.plotly_chart(fig_bars)
|
249 |
|
250 |
|
251 |
-
|
252 |
with tab2:
|
253 |
st.markdown("""
|
254 |
### <span style='text-decoration: #FDA428 wavy underline;'>**Cause of Creation**</span>
|
@@ -321,9 +433,10 @@ st.markdown("""
|
|
321 |
- [Remigiusz Kinas](https://www.linkedin.com/in/remigiusz-kinas/) - methodological support
|
322 |
- [Krzysztof WrΓ³bel](https://www.linkedin.com/in/wrobelkrzysztof/) - engineering, methodological support
|
323 |
- [Szymon BaczyΕski](https://www.linkedin.com/in/szymon-baczynski/) - front-end / streamlit assistant
|
|
|
324 |
- [Maria Filipkowska](https://www.linkedin.com/in/maria-filipkowska/) - writing text, linguistic support
|
325 |
""")
|
326 |
|
327 |
st.divider()
|
328 |
|
329 |
-
# Run the app with `streamlit run your_script.py`
|
|
|
7 |
from st_social_media_links import SocialMediaIcons
|
8 |
|
9 |
|
10 |
+
PARAMS_COLUMN_NAME = "Params"
|
11 |
RESULTS_COLUMN_NAME = "Results"
|
12 |
AVERAGE_COLUMN_NAME = "Average"
|
13 |
SENTIMENT_COLUMN_NAME = "Sentiment"
|
14 |
UNDERSTANDING_COLUMN_NAME = "Language understanding"
|
15 |
PHRASEOLOGY_COLUMN_NAME = "Phraseology"
|
16 |
+
TRICKY_QUESTIONS_COLUMN_NAME = "Tricky questions"
|
17 |
+
IMPLICATURES_AVERAGE_COLUMN_NAME = "Implicatures average"
|
18 |
|
19 |
# Function to load data from JSON file
|
20 |
+
|
21 |
+
|
22 |
@st.cache_data
|
23 |
def load_data(file_path):
|
24 |
with open(file_path, 'r', encoding='utf-8') as file:
|
25 |
data = json.load(file)
|
26 |
+
df = pd.DataFrame(data)
|
27 |
+
df[AVERAGE_COLUMN_NAME] = df[['Sentiment',
|
28 |
+
'Language understanding', 'Phraseology', 'Tricky questions']].mean(axis=1)
|
29 |
+
|
30 |
+
df[IMPLICATURES_AVERAGE_COLUMN_NAME] = df[['Sentiment',
|
31 |
+
'Language understanding', 'Phraseology']].mean(axis=1)
|
32 |
+
return df
|
33 |
|
34 |
# Function to style the DataFrame
|
35 |
+
|
36 |
+
|
37 |
@st.cache_data
|
38 |
def style_dataframe(df: pd.DataFrame):
|
39 |
+
df[RESULTS_COLUMN_NAME] = df.apply(lambda row: [
|
40 |
+
row[SENTIMENT_COLUMN_NAME], row[UNDERSTANDING_COLUMN_NAME], row[PHRASEOLOGY_COLUMN_NAME], row[TRICKY_QUESTIONS_COLUMN_NAME]], axis=1)
|
41 |
cols = list(df.columns)
|
42 |
+
|
43 |
+
# move average column
|
44 |
+
cols.insert(cols.index(PARAMS_COLUMN_NAME) + 1,
|
45 |
+
cols.pop(cols.index(AVERAGE_COLUMN_NAME)))
|
46 |
+
|
47 |
+
# move impicatures average column
|
48 |
+
cols.insert(cols.index(AVERAGE_COLUMN_NAME) + 1,
|
49 |
+
cols.pop(cols.index(IMPLICATURES_AVERAGE_COLUMN_NAME)))
|
50 |
+
|
51 |
+
# move results column
|
52 |
+
cols.insert(cols.index(IMPLICATURES_AVERAGE_COLUMN_NAME) + 1,
|
53 |
+
cols.pop(cols.index(RESULTS_COLUMN_NAME)))
|
54 |
+
# Insert the new column after the 'Average' column
|
55 |
df = df[cols]
|
56 |
# Create a color ramp using Seaborn
|
57 |
return df
|
58 |
|
59 |
+
|
60 |
def styler(df: pd.DataFrame):
|
61 |
palette = sns.color_palette("RdYlGn", as_cmap=True)
|
62 |
# Apply reverse color gradient to the "Params" column
|
63 |
+
params_palette = sns.color_palette(
|
64 |
+
"RdYlGn_r", as_cmap=True) # Reversed RdYlGn palette
|
65 |
+
styled_df = df.style.background_gradient(cmap=palette, subset=[AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME, PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME, TRICKY_QUESTIONS_COLUMN_NAME, IMPLICATURES_AVERAGE_COLUMN_NAME]
|
66 |
+
).background_gradient(cmap=params_palette, subset=["Params"]
|
67 |
+
).set_properties(**{'text-align': 'center'}, subset=[AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME, PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME, TRICKY_QUESTIONS_COLUMN_NAME, IMPLICATURES_AVERAGE_COLUMN_NAME]
|
68 |
+
).format("{:.2f}".center(10), subset=[AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME, PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME, TRICKY_QUESTIONS_COLUMN_NAME, IMPLICATURES_AVERAGE_COLUMN_NAME]
|
69 |
+
).format("{:.1f}".center(10), subset=["Params"])
|
70 |
return styled_df
|
71 |
|
72 |
|
73 |
+
# Streamlit app
|
74 |
st.set_page_config(layout="wide")
|
75 |
|
76 |
st.markdown("""
|
|
|
85 |
</style>
|
86 |
""", unsafe_allow_html=True)
|
87 |
|
88 |
+
# Prepare layout
|
89 |
|
90 |
st.markdown("""
|
91 |
<style>
|
|
|
114 |
# ----------------------------------------------------------
|
115 |
st.markdown("""<br>""", unsafe_allow_html=True)
|
116 |
|
117 |
+
# Row: 1 --> Title + links to SpeakLeash.org website / GitHub / X (Twitter)
|
118 |
social_media_links = [
|
119 |
"https://discord.com/invite/ZJwCMrxwT7",
|
120 |
"https://github.com/speakleash",
|
|
|
137 |
links_color
|
138 |
]
|
139 |
|
140 |
+
social_media_icons = SocialMediaIcons(
|
141 |
+
social_media_links, social_media_links_colors)
|
142 |
social_media_icons.render(justify_content='right')
|
143 |
|
144 |
st.markdown("""
|
|
|
168 |
|
169 |
# Prepare data
|
170 |
data = load_data('data.json')
|
171 |
+
|
172 |
data['Params'] = pd.to_numeric(
|
173 |
+
data['Params'].str.replace('B', ''),
|
174 |
+
errors='coerce'
|
175 |
+
)
|
176 |
data = data.sort_values(by=AVERAGE_COLUMN_NAME, ascending=False)
|
177 |
|
178 |
# Closing filters in a expander
|
179 |
with st.expander("Filtering benchmark data", icon='π'):
|
180 |
# Filtering data, e.g. slider for params, average score, etc.
|
181 |
+
col_filter_params, col_filter_average, col_filter_implicatures_average, col_filter_sentiment, col_filter_understanding, col_filter_phraseology, col_filter_tricky_questions = st.columns(
|
182 |
+
7, gap='medium')
|
183 |
+
|
184 |
with col_filter_params:
|
185 |
max_params = data['Params'].max(skipna=True)
|
186 |
if pd.isna(max_params):
|
187 |
max_params = 0.0
|
188 |
+
|
189 |
params_slider = st.slider(
|
190 |
"Models Size [B]",
|
191 |
min_value=0.0,
|
|
|
203 |
]
|
204 |
|
205 |
with col_filter_average:
|
206 |
+
average_slider = st.slider(
|
207 |
+
"Average score", step=0.1, min_value=0.0, max_value=5.0, value=(0.0, 5.0))
|
208 |
+
data = data[(data[AVERAGE_COLUMN_NAME] >= average_slider[0]) & (
|
209 |
+
data[AVERAGE_COLUMN_NAME] <= average_slider[1])]
|
210 |
+
|
211 |
+
with col_filter_implicatures_average:
|
212 |
+
implicatures_average_slider = st.slider(
|
213 |
+
"Implicatures average", step=0.1, min_value=0.0, max_value=5.0, value=(0.0, 5.0))
|
214 |
+
data = data[(data[IMPLICATURES_AVERAGE_COLUMN_NAME] >= implicatures_average_slider[0]) & (
|
215 |
+
data[IMPLICATURES_AVERAGE_COLUMN_NAME] <= implicatures_average_slider[1])]
|
216 |
|
217 |
with col_filter_sentiment:
|
218 |
+
sentiment_slider = st.slider(
|
219 |
+
"Sentiment score", step=0.1, min_value=0.0, max_value=5.0, value=(0.0, 5.0))
|
220 |
+
data = data[(data[SENTIMENT_COLUMN_NAME] >= sentiment_slider[0]) & (
|
221 |
+
data[SENTIMENT_COLUMN_NAME] <= sentiment_slider[1])]
|
222 |
|
223 |
with col_filter_understanding:
|
224 |
+
understanding_slider = st.slider(
|
225 |
+
"Understanding score", step=0.1, min_value=0.0, max_value=5.0, value=(0.0, 5.0))
|
226 |
+
data = data[(data[UNDERSTANDING_COLUMN_NAME] >= understanding_slider[0]) & (
|
227 |
+
data[UNDERSTANDING_COLUMN_NAME] <= understanding_slider[1])]
|
228 |
|
229 |
with col_filter_phraseology:
|
230 |
+
phraseology_slider = st.slider(
|
231 |
+
"Phraseology score", step=0.1, min_value=0.0, max_value=5.0, value=(0.0, 5.0))
|
232 |
+
data = data[(data[PHRASEOLOGY_COLUMN_NAME] >= phraseology_slider[0]) & (
|
233 |
+
data[PHRASEOLOGY_COLUMN_NAME] <= phraseology_slider[1])]
|
234 |
+
|
235 |
+
with col_filter_tricky_questions:
|
236 |
+
tricky_questions_slider = st.slider(
|
237 |
+
"Tricky questions score", step=0.1, min_value=0.0, max_value=5.0, value=(0.0, 5.0))
|
238 |
+
data = data[(data[TRICKY_QUESTIONS_COLUMN_NAME] >= tricky_questions_slider[0]) & (
|
239 |
+
data[TRICKY_QUESTIONS_COLUMN_NAME] <= tricky_questions_slider[1])]
|
240 |
|
241 |
# Extract unique provider names from the "Model" column
|
242 |
providers = data["Model"].apply(lambda x: x.split('/')[0].lower()).unique()
|
|
|
244 |
# Filter data based on selected providers
|
245 |
data = data[data["Model"].apply(lambda x: x.split('/')[0].lower()).isin(selected_providers)]
|
246 |
|
247 |
+
|
248 |
+
# Define all possible columns
|
249 |
+
all_columns = {
|
250 |
+
"Model": "Model",
|
251 |
+
"Params": "Params",
|
252 |
+
AVERAGE_COLUMN_NAME: "Average",
|
253 |
+
IMPLICATURES_AVERAGE_COLUMN_NAME: "Impl. Avg",
|
254 |
+
SENTIMENT_COLUMN_NAME: "Sentiment",
|
255 |
+
UNDERSTANDING_COLUMN_NAME: "Understanding",
|
256 |
+
PHRASEOLOGY_COLUMN_NAME: "Phraseology",
|
257 |
+
TRICKY_QUESTIONS_COLUMN_NAME: "Tricky Questions"
|
258 |
+
}
|
259 |
+
|
260 |
+
# By default, all columns are selected
|
261 |
+
default_columns = list(all_columns.keys())
|
262 |
+
|
263 |
+
# Use pills to select visible columns in multi-selection mode
|
264 |
+
selected_column_labels = st.pills(
|
265 |
+
label="Visible columns",
|
266 |
+
options=list(all_columns.values()),
|
267 |
+
default=list(all_columns.values()), # Set all columns as default
|
268 |
+
selection_mode="multi", # Enable multi-selection mode
|
269 |
+
key="visible_columns_pills"
|
270 |
+
)
|
271 |
+
|
272 |
+
# Map selected labels back to column names
|
273 |
+
reverse_mapping = {v: k for k, v in all_columns.items()}
|
274 |
+
selected_columns = [reverse_mapping[label] for label in selected_column_labels]
|
275 |
+
|
276 |
+
# If nothing is selected, show all columns
|
277 |
+
if not selected_columns:
|
278 |
+
selected_columns = default_columns
|
279 |
+
|
280 |
+
# Display data
|
281 |
styled_df_show = style_dataframe(data)
|
282 |
styled_df_show = styler(styled_df_show)
|
283 |
|
284 |
+
# Customize column_config based on selected columns
|
285 |
+
column_config = {}
|
286 |
+
|
287 |
+
# Set configuration for all columns
|
288 |
+
if "Model" in styled_df_show.columns:
|
289 |
+
column_config["Model"] = st.column_config.TextColumn("Model", help="Model name", width="large") if "Model" in selected_columns else None
|
290 |
+
|
291 |
+
if "Params" in styled_df_show.columns:
|
292 |
+
column_config["Params"] = st.column_config.NumberColumn("Params [B]") if "Params" in selected_columns else None
|
293 |
+
|
294 |
+
if AVERAGE_COLUMN_NAME in styled_df_show.columns:
|
295 |
+
column_config[AVERAGE_COLUMN_NAME] = st.column_config.NumberColumn(AVERAGE_COLUMN_NAME) if AVERAGE_COLUMN_NAME in selected_columns else None
|
296 |
+
|
297 |
+
if IMPLICATURES_AVERAGE_COLUMN_NAME in styled_df_show.columns:
|
298 |
+
column_config[IMPLICATURES_AVERAGE_COLUMN_NAME] = st.column_config.NumberColumn(IMPLICATURES_AVERAGE_COLUMN_NAME) if IMPLICATURES_AVERAGE_COLUMN_NAME in selected_columns else None
|
299 |
+
|
300 |
+
if RESULTS_COLUMN_NAME in styled_df_show.columns:
|
301 |
+
# Show Results only if Average is selected
|
302 |
+
column_config[RESULTS_COLUMN_NAME] = st.column_config.BarChartColumn(
|
303 |
"Bar chart of results", help="Summary of the results of each task",
|
304 |
+
y_min=0, y_max=5) if AVERAGE_COLUMN_NAME in selected_columns else None
|
305 |
+
|
306 |
+
if SENTIMENT_COLUMN_NAME in styled_df_show.columns:
|
307 |
+
column_config[SENTIMENT_COLUMN_NAME] = st.column_config.NumberColumn(SENTIMENT_COLUMN_NAME, help='Ability to analyze sentiment') if SENTIMENT_COLUMN_NAME in selected_columns else None
|
308 |
+
|
309 |
+
if UNDERSTANDING_COLUMN_NAME in styled_df_show.columns:
|
310 |
+
column_config[UNDERSTANDING_COLUMN_NAME] = st.column_config.NumberColumn(UNDERSTANDING_COLUMN_NAME, help='Ability to understand language') if UNDERSTANDING_COLUMN_NAME in selected_columns else None
|
311 |
+
|
312 |
+
if PHRASEOLOGY_COLUMN_NAME in styled_df_show.columns:
|
313 |
+
column_config[PHRASEOLOGY_COLUMN_NAME] = st.column_config.NumberColumn(PHRASEOLOGY_COLUMN_NAME, help='Ability to understand phraseological compounds') if PHRASEOLOGY_COLUMN_NAME in selected_columns else None
|
314 |
+
|
315 |
+
if TRICKY_QUESTIONS_COLUMN_NAME in styled_df_show.columns:
|
316 |
+
column_config[TRICKY_QUESTIONS_COLUMN_NAME] = st.column_config.NumberColumn(TRICKY_QUESTIONS_COLUMN_NAME, help='Ability to understand tricky questions') if TRICKY_QUESTIONS_COLUMN_NAME in selected_columns else None
|
317 |
+
|
318 |
+
st.data_editor(styled_df_show, column_config=column_config, hide_index=True, disabled=True, height=500)
|
319 |
|
320 |
# Add selection for models and create a bar chart for selected models using the AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME, PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME
|
321 |
# Add default selection of 3 best models from AVERAGE_COLUMN_NAME and 1 best model with "Bielik" in Model column
|
322 |
+
default_models = list(data.sort_values(
|
323 |
+
AVERAGE_COLUMN_NAME, ascending=False)['Model'].head(3))
|
324 |
+
bielik_model = data[data['Model'].str.contains('Bielik')].sort_values(
|
325 |
+
AVERAGE_COLUMN_NAME, ascending=False)['Model'].iloc[0]
|
326 |
if bielik_model not in default_models:
|
327 |
default_models.append(bielik_model)
|
328 |
+
selected_models = st.multiselect(
|
329 |
+
"Select models to compare", data["Model"].unique(), default=default_models)
|
330 |
selected_data = data[data["Model"].isin(selected_models)]
|
331 |
+
categories = [AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME,
|
332 |
+
PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME, TRICKY_QUESTIONS_COLUMN_NAME]
|
333 |
|
334 |
if selected_models:
|
335 |
# Kolorki do wyboru:
|
|
|
338 |
|
339 |
fig_bars = go.Figure()
|
340 |
for model, color in zip(selected_models, colors):
|
341 |
+
values = selected_data[selected_data['Model'] ==
|
342 |
+
model][categories].values.flatten().tolist()
|
343 |
fig_bars.add_trace(go.Bar(
|
344 |
x=categories,
|
345 |
y=values,
|
|
|
350 |
# Update layout to use a custom color scale
|
351 |
fig_bars.update_layout(
|
352 |
showlegend=True,
|
353 |
+
legend=dict(orientation="h", yanchor="top",
|
354 |
+
y=-0.3, xanchor="center", x=0.5),
|
355 |
title="Comparison of Selected Models",
|
356 |
yaxis_title="Score",
|
357 |
template="plotly_dark"
|
|
|
360 |
st.plotly_chart(fig_bars)
|
361 |
|
362 |
|
363 |
+
# ZakΕadka 2 --> Opis
|
364 |
with tab2:
|
365 |
st.markdown("""
|
366 |
### <span style='text-decoration: #FDA428 wavy underline;'>**Cause of Creation**</span>
|
|
|
433 |
- [Remigiusz Kinas](https://www.linkedin.com/in/remigiusz-kinas/) - methodological support
|
434 |
- [Krzysztof WrΓ³bel](https://www.linkedin.com/in/wrobelkrzysztof/) - engineering, methodological support
|
435 |
- [Szymon BaczyΕski](https://www.linkedin.com/in/szymon-baczynski/) - front-end / streamlit assistant
|
436 |
+
- [Artur SΕomowski](https://www.linkedin.com/in/arturslomowski/) - front-end / streamlit assistant
|
437 |
- [Maria Filipkowska](https://www.linkedin.com/in/maria-filipkowska/) - writing text, linguistic support
|
438 |
""")
|
439 |
|
440 |
st.divider()
|
441 |
|
442 |
+
# Run the app with `streamlit run your_script.py`
|
data.json
CHANGED
@@ -2,497 +2,497 @@
|
|
2 |
{
|
3 |
"Model": "mistralai/Mistral-Large-Instruct-2407",
|
4 |
"Params": "123B",
|
5 |
-
"Average": 4.03025641025641,
|
6 |
"Sentiment": 4.230769230769231,
|
7 |
"Language understanding": 4.0,
|
8 |
-
"Phraseology": 3.86
|
|
|
9 |
},
|
10 |
{
|
11 |
"Model": "alpindale/WizardLM-2-8x22B",
|
12 |
"Params": "141B",
|
13 |
-
"Average": 3.9133760683760683,
|
14 |
"Sentiment": 3.7051282051282053,
|
15 |
"Language understanding": 3.815,
|
16 |
-
"Phraseology": 4.22
|
|
|
17 |
},
|
18 |
{
|
19 |
"Model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
20 |
"Params": "70.6B",
|
21 |
-
"Average": 3.828974358974359,
|
22 |
"Sentiment": 4.326923076923077,
|
23 |
"Language understanding": 3.91,
|
24 |
-
"Phraseology": 3.25
|
|
|
25 |
},
|
26 |
{
|
27 |
"Model": "meta-llama/Meta-Llama-3-70B-Instruct",
|
28 |
"Params": "70.6B",
|
29 |
-
"Average": 3.806538461538462,
|
30 |
"Sentiment": 4.134615384615385,
|
31 |
"Language understanding": 3.82,
|
32 |
-
"Phraseology": 3.465
|
|
|
33 |
},
|
34 |
{
|
35 |
"Model": "speakleash/Bielik-11B-v2.3-Instruct",
|
36 |
"Params": "11.2B",
|
37 |
-
"Average": 3.7697863247863252,
|
38 |
"Sentiment": 3.9743589743589745,
|
39 |
"Language understanding": 3.785,
|
40 |
-
"Phraseology": 3.55
|
|
|
41 |
},
|
42 |
{
|
43 |
"Model": "mistralai/Mixtral-8x22B-Instruct-v0.1",
|
44 |
"Params": "141B",
|
45 |
-
"Average": 3.6690170940170943,
|
46 |
"Sentiment": 3.782051282051282,
|
47 |
"Language understanding": 3.675,
|
48 |
-
"Phraseology": 3.55
|
|
|
49 |
},
|
50 |
{
|
51 |
"Model": "speakleash/Bielik-11B-v2.1-Instruct",
|
52 |
"Params": "11.2B",
|
53 |
-
"Average": 3.6583760683760684,
|
54 |
"Sentiment": 3.9551282051282053,
|
55 |
"Language understanding": 3.915,
|
56 |
-
"Phraseology": 3.105
|
|
|
57 |
},
|
58 |
{
|
59 |
"Model": "Qwen/Qwen2-72B-Instruct",
|
60 |
"Params": "72.7B",
|
61 |
-
"Average": 3.6442735042735044,
|
62 |
"Sentiment": 3.7628205128205128,
|
63 |
"Language understanding": 3.89,
|
64 |
-
"Phraseology": 3.28
|
|
|
65 |
},
|
66 |
{
|
67 |
"Model": "speakleash/Bielik-11B-v2.0-Instruct",
|
68 |
"Params": "11.2B",
|
69 |
-
"Average": 3.614786324786325,
|
70 |
"Sentiment": 3.9743589743589745,
|
71 |
"Language understanding": 3.745,
|
72 |
-
"Phraseology": 3.125
|
|
|
73 |
},
|
74 |
{
|
75 |
"Model": "speakleash/Bielik-11B-v2.2-Instruct",
|
76 |
"Params": "11.2B",
|
77 |
-
"Average": 3.565982905982906,
|
78 |
"Sentiment": 3.717948717948718,
|
79 |
"Language understanding": 3.73,
|
80 |
-
"Phraseology": 3.25
|
|
|
81 |
},
|
82 |
{
|
83 |
"Model": "Qwen/Qwen1.5-72B-Chat",
|
84 |
"Params": "72.3B",
|
85 |
-
"Average": 3.3214529914529916,
|
86 |
"Sentiment": 3.4743589743589745,
|
87 |
"Language understanding": 3.515,
|
88 |
-
"Phraseology": 2.975
|
|
|
89 |
},
|
90 |
{
|
91 |
"Model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
92 |
"Params": "8.03B",
|
93 |
-
"Average": 3.3114529914529918,
|
94 |
"Sentiment": 3.9743589743589745,
|
95 |
"Language understanding": 3.38,
|
96 |
-
"Phraseology": 2.58
|
|
|
97 |
},
|
98 |
{
|
99 |
"Model": "THUDM/glm-4-9b-chat",
|
100 |
"Params": "9.4B",
|
101 |
-
"Average": 3.2749145299145295,
|
102 |
"Sentiment": 3.58974358974359,
|
103 |
"Language understanding": 3.455,
|
104 |
-
"Phraseology": 2.78
|
|
|
105 |
},
|
106 |
{
|
107 |
"Model": "mistralai/Mistral-Nemo-Instruct-2407",
|
108 |
"Params": "12.2B",
|
109 |
-
"Average": 3.223675213675214,
|
110 |
"Sentiment": 3.641025641025641,
|
111 |
"Language understanding": 3.29,
|
112 |
-
"Phraseology": 2.74
|
|
|
113 |
},
|
114 |
{
|
115 |
"Model": "meta-llama/Meta-Llama-3-8B-Instruct",
|
116 |
"Params": "8.03B",
|
117 |
-
"Average": 3.172777777777778,
|
118 |
"Sentiment": 3.3333333333333335,
|
119 |
"Language understanding": 3.15,
|
120 |
-
"Phraseology": 3.035
|
|
|
121 |
},
|
122 |
{
|
123 |
"Model": "upstage/SOLAR-10.7B-Instruct-v1.0",
|
124 |
"Params": "10.7B",
|
125 |
-
"Average": 3.1343162393162394,
|
126 |
"Sentiment": 2.967948717948718,
|
127 |
"Language understanding": 3.18,
|
128 |
-
"Phraseology": 3.255
|
|
|
129 |
},
|
130 |
{
|
131 |
"Model": "speakleash/Bielik-7B-Instruct-v0.1",
|
132 |
"Params": "7.24B",
|
133 |
-
"Average": 3.126581196581197,
|
134 |
"Sentiment": 3.58974358974359,
|
135 |
"Language understanding": 3.475,
|
136 |
-
"Phraseology": 2.315
|
|
|
137 |
},
|
138 |
{
|
139 |
"Model": "openchat/openchat-3.5-0106-gemma",
|
140 |
"Params": "8.54B",
|
141 |
-
"Average": 3.08525641025641,
|
142 |
"Sentiment": 3.730769230769231,
|
143 |
"Language understanding": 3.08,
|
144 |
-
"Phraseology": 2.445
|
|
|
145 |
},
|
146 |
{
|
147 |
"Model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
148 |
"Params": "46.7B",
|
149 |
-
"Average": 3.039230769230769,
|
150 |
"Sentiment": 3.0576923076923075,
|
151 |
"Language understanding": 3.175,
|
152 |
-
"Phraseology": 2.885
|
|
|
153 |
},
|
154 |
{
|
155 |
"Model": "mistralai/Mistral-7B-Instruct-v0.3",
|
156 |
"Params": "7.25B",
|
157 |
-
"Average": 3.022307692307692,
|
158 |
"Sentiment": 3.326923076923077,
|
159 |
"Language understanding": 3.06,
|
160 |
-
"Phraseology": 2.68
|
|
|
161 |
},
|
162 |
{
|
163 |
"Model": "berkeley-nest/Starling-LM-7B-alpha",
|
164 |
"Params": "7.24B",
|
165 |
-
"Average": 2.945897435897436,
|
166 |
"Sentiment": 3.0576923076923075,
|
167 |
"Language understanding": 2.925,
|
168 |
-
"Phraseology": 2.855
|
|
|
169 |
},
|
170 |
{
|
171 |
"Model": "openchat/openchat-3.5-0106",
|
172 |
"Params": "7.24B",
|
173 |
-
"Average": 2.8500854700854696,
|
174 |
"Sentiment": 3.16025641025641,
|
175 |
"Language understanding": 2.835,
|
176 |
-
"Phraseology": 2.555
|
|
|
177 |
},
|
178 |
{
|
179 |
"Model": "internlm/internlm2-chat-20b",
|
180 |
"Params": "19.9B",
|
181 |
-
"Average": 2.8237606837606837,
|
182 |
"Sentiment": 3.301282051282051,
|
183 |
"Language understanding": 2.785,
|
184 |
-
"Phraseology": 2.385
|
|
|
185 |
},
|
186 |
{
|
187 |
"Model": "01-ai/Yi-1.5-34B-Chat",
|
188 |
"Params": "34.4B",
|
189 |
-
"Average": 2.7756410256410255,
|
190 |
"Sentiment": 3.076923076923077,
|
191 |
"Language understanding": 2.87,
|
192 |
-
"Phraseology": 2.38
|
|
|
193 |
},
|
194 |
{
|
195 |
"Model": "Voicelab/trurl-2-13b-academic",
|
196 |
"Params": "13B",
|
197 |
-
"Average": 2.74042735042735,
|
198 |
"Sentiment": 3.301282051282051,
|
199 |
"Language understanding": 2.755,
|
200 |
-
"Phraseology": 2.165
|
|
|
201 |
},
|
202 |
{
|
203 |
"Model": "google/gemma-2-2b-it",
|
204 |
"Params": "2.61B",
|
205 |
-
"Average": 2.7974786324786325,
|
206 |
"Sentiment": 3.3974358974359,
|
207 |
"Language understanding": 2.9,
|
208 |
-
"Phraseology": 2.095
|
|
|
209 |
},
|
210 |
{
|
211 |
"Model": "Qwen/Qwen2.5-3B-Instruct",
|
212 |
"Params": "3.09B",
|
213 |
-
"Average": 2.734572649572649,
|
214 |
"Sentiment": 2.948717948717949,
|
215 |
"Language understanding": 2.455,
|
216 |
-
"Phraseology": 2.8
|
|
|
217 |
},
|
218 |
{
|
219 |
"Model": "NousResearch/Hermes-3-Llama-3.2-3B",
|
220 |
"Params": "3.21B",
|
221 |
-
"Average": 2.695128205128205,
|
222 |
"Sentiment": 2.6153846153846154,
|
223 |
"Language understanding": 2.705,
|
224 |
-
"Phraseology": 2.765
|
|
|
225 |
},
|
226 |
{
|
227 |
"Model": "ibm-granite/granite-3.1-2b-instruct",
|
228 |
"Params": "2.53B",
|
229 |
-
"Average": 2.397307692307692,
|
230 |
"Sentiment": 3.076923076923077,
|
231 |
"Language understanding": 2.235,
|
232 |
-
"Phraseology": 1.88
|
|
|
233 |
},
|
234 |
{
|
235 |
"Model": "meta-llama/Llama-3.2-1B-Instruct",
|
236 |
"Params": "1.24B",
|
237 |
-
"Average": 2.383974358974359,
|
238 |
"Sentiment": 3.076923076923077,
|
239 |
"Language understanding": 1.735,
|
240 |
-
"Phraseology": 2.34
|
|
|
241 |
},
|
242 |
{
|
243 |
"Model": "microsoft/Phi-3.5-mini-instruct",
|
244 |
"Params": "3.82B",
|
245 |
-
"Average": 2.331965811965812,
|
246 |
"Sentiment": 2.435897435897436,
|
247 |
"Language understanding": 2.135,
|
248 |
-
"Phraseology": 2.425
|
|
|
249 |
},
|
250 |
{
|
251 |
"Model": "meta-llama/Llama-3.2-3B-Instruct",
|
252 |
"Params": "3.21B",
|
253 |
-
"Average": 2.257136752136752,
|
254 |
"Sentiment": 2.7564102564102564,
|
255 |
"Language understanding": 2.295,
|
256 |
-
"Phraseology": 1.72
|
|
|
257 |
},
|
258 |
{
|
259 |
"Model": "h2oai/h2o-danube2-1.8b-chat",
|
260 |
"Params": "1.83B",
|
261 |
-
"Average": 2.1455982905982904,
|
262 |
"Sentiment": 2.371794871794872,
|
263 |
"Language understanding": 1.595,
|
264 |
-
"Phraseology": 2.47
|
|
|
265 |
},
|
266 |
{
|
267 |
"Model": "Qwen/Qwen2.5-1.5B-Instruct",
|
268 |
"Params": "1.54B",
|
269 |
-
"Average": 2.1232905982905983,
|
270 |
"Sentiment": 2.7948717948717947,
|
271 |
"Language understanding": 1.35,
|
272 |
-
"Phraseology": 2.225
|
|
|
273 |
},
|
274 |
{
|
275 |
"Model": "utter-project/EuroLLM-1.7B-Instruct",
|
276 |
"Params": "1.66B",
|
277 |
-
"Average": 2.097863247863248,
|
278 |
"Sentiment": 2.243589743589744,
|
279 |
"Language understanding": 1.79,
|
280 |
-
"Phraseology": 2.26
|
|
|
281 |
},
|
282 |
{
|
283 |
"Model": "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct",
|
284 |
"Params": "2.41B",
|
285 |
-
"Average": 2.062846282695529,
|
286 |
"Sentiment": 1.9423076923076923,
|
287 |
"Language understanding": 2.1155778894472363,
|
288 |
-
"Phraseology": 2.130653266331658
|
|
|
289 |
},
|
290 |
{
|
291 |
"Model": "HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
292 |
"Params": "1.71B",
|
293 |
-
"Average": 1.9102136752136751,
|
294 |
"Sentiment": 2.275641025641025,
|
295 |
"Language understanding": 1.1,
|
296 |
-
"Phraseology": 2.355
|
|
|
297 |
},
|
298 |
{
|
299 |
"Model": "Qwen/Qwen2.5-0.5B-Instruct",
|
300 |
"Params": "0.49B",
|
301 |
-
"Average": 1.7950427350427354,
|
302 |
"Sentiment": 1.955128205128205,
|
303 |
"Language understanding": 0.835,
|
304 |
-
"Phraseology": 2.595
|
|
|
305 |
},
|
306 |
{
|
307 |
"Model": "CYFRAGOVPL/Llama-PLLuM-70B-chat",
|
308 |
"Params": "70.6B",
|
309 |
-
"Average": 3.63,
|
310 |
"Sentiment": 3.94,
|
311 |
"Language understanding": 3.61,
|
312 |
-
"Phraseology": 3.35
|
|
|
313 |
},
|
314 |
{
|
315 |
"Model": "CYFRAGOVPL/PLLuM-8x7B-nc-instruct",
|
316 |
"Params": "46.7B",
|
317 |
-
"Average": 3.56,
|
318 |
"Sentiment": 3.88,
|
319 |
"Language understanding": 3.59,
|
320 |
-
"Phraseology": 3.22
|
|
|
321 |
},
|
322 |
{
|
323 |
"Model": "CYFRAGOVPL/Llama-PLLuM-70B-instruct",
|
324 |
"Params": "70.6B",
|
325 |
-
"Average": 3.56,
|
326 |
"Sentiment": 3.78,
|
327 |
"Language understanding": 3.63,
|
328 |
-
"Phraseology": 3.26
|
|
|
329 |
},
|
330 |
{
|
331 |
"Model": "CYFRAGOVPL/PLLuM-8x7B-instruct",
|
332 |
"Params": "46.7B",
|
333 |
-
"Average": 3.50,
|
334 |
"Sentiment": 3.59,
|
335 |
"Language understanding": 3.47,
|
336 |
-
"Phraseology": 3.46
|
|
|
337 |
},
|
338 |
{
|
339 |
"Model": "CYFRAGOVPL/PLLuM-12B-instruct",
|
340 |
"Params": "12.2B",
|
341 |
-
"Average": 3.49,
|
342 |
"Sentiment": 3.71,
|
343 |
"Language understanding": 3.17,
|
344 |
-
"Phraseology": 3.59
|
|
|
345 |
},
|
346 |
{
|
347 |
"Model": "CYFRAGOVPL/PLLuM-8x7B-nc-chat",
|
348 |
"Params": "46.7B",
|
349 |
-
"Average": 3.44,
|
350 |
"Sentiment": 3.76,
|
351 |
"Language understanding": 3.48,
|
352 |
-
"Phraseology": 3.08
|
|
|
353 |
},
|
354 |
{
|
355 |
"Model": "CYFRAGOVPL/PLLuM-8x7B-chat",
|
356 |
"Params": "46.7B",
|
357 |
-
"Average": 3.41,
|
358 |
"Sentiment": 3.44,
|
359 |
"Language understanding": 3.45,
|
360 |
-
"Phraseology": 3.35
|
|
|
361 |
},
|
362 |
{
|
363 |
"Model": "CYFRAGOVPL/PLLuM-12B-chat",
|
364 |
"Params": "12.2B",
|
365 |
-
"Average": 3.32,
|
366 |
"Sentiment": 3.32,
|
367 |
"Language understanding": 3.21,
|
368 |
-
"Phraseology": 3.43
|
|
|
369 |
},
|
370 |
{
|
371 |
"Model": "CYFRAGOVPL/PLLuM-12B-nc-instruct",
|
372 |
"Params": "12.2B",
|
373 |
-
"Average": 3.29,
|
374 |
"Sentiment": 3.24,
|
375 |
"Language understanding": 3.31,
|
376 |
-
"Phraseology": 3.32
|
|
|
377 |
},
|
378 |
{
|
379 |
"Model": "CYFRAGOVPL/Llama-PLLuM-8B-instruct",
|
380 |
"Params": "8.03B",
|
381 |
-
"Average": 3.20,
|
382 |
"Sentiment": 3.24,
|
383 |
"Language understanding": 2.90,
|
384 |
-
"Phraseology": 3.46
|
|
|
385 |
},
|
386 |
{
|
387 |
"Model": "CYFRAGOVPL/Llama-PLLuM-8B-chat",
|
388 |
"Params": "8.03B",
|
389 |
-
"Average": 3.14,
|
390 |
"Sentiment": 3.13,
|
391 |
"Language understanding": 2.93,
|
392 |
-
"Phraseology": 3.36
|
|
|
393 |
},
|
394 |
{
|
395 |
"Model": "CYFRAGOVPL/PLLuM-12B-nc-chat",
|
396 |
"Params": "12.2B",
|
397 |
-
"Average": 3.33,
|
398 |
"Sentiment": 3.22,
|
399 |
"Language understanding": 3.23,
|
400 |
-
"Phraseology": 3.54
|
|
|
401 |
},
|
402 |
{
|
403 |
"Model": "Qwen/Qwen2.5-72B-Instruct",
|
404 |
"Params": "72.7B",
|
405 |
-
"Average": 3.9923076923076923,
|
406 |
"Sentiment": 4.076923076923077,
|
407 |
"Language understanding": 3.97,
|
408 |
-
"Phraseology": 3.93
|
|
|
409 |
},
|
410 |
{
|
411 |
"Model": "Qwen/Qwen2.5-32B-Instruct",
|
412 |
"Params": "32.8B",
|
413 |
-
"Average": 3.8047008547008545,
|
414 |
"Sentiment": 3.8141025641025643,
|
415 |
"Language understanding": 3.565,
|
416 |
-
"Phraseology": 4.035
|
|
|
417 |
},
|
418 |
{
|
419 |
"Model": "mistralai/Mistral-Small-24B-Instruct-2501",
|
420 |
"Params": "23.6B",
|
421 |
-
"Average": 3.79508547008547,
|
422 |
"Sentiment": 3.91025641025641,
|
423 |
"Language understanding": 3.6,
|
424 |
-
"Phraseology": 3.875
|
|
|
425 |
},
|
426 |
{
|
427 |
"Model": "meta-llama/Llama-3.3-70B-Instruct",
|
428 |
"Params": "70.6B",
|
429 |
-
"Average": 3.7332905982905977,
|
430 |
"Sentiment": 4.294871794871795,
|
431 |
"Language understanding": 3.865,
|
432 |
-
"Phraseology": 3.04
|
|
|
433 |
},
|
434 |
{
|
435 |
"Model": "Qwen/Qwen2.5-14B-Instruct",
|
436 |
"Params": "14.8B",
|
437 |
-
"Average": 3.61508547008547,
|
438 |
"Sentiment": 3.91025641025641,
|
439 |
"Language understanding": 3.565,
|
440 |
-
"Phraseology": 3.37
|
|
|
441 |
},
|
442 |
{
|
443 |
"Model": "microsoft/phi-4",
|
444 |
"Params": "14.7B",
|
445 |
-
"Average": 3.4976495726495727,
|
446 |
"Sentiment": 3.717948717948718,
|
447 |
"Language understanding": 3.54,
|
448 |
-
"Phraseology": 3.235
|
|
|
449 |
},
|
450 |
{
|
451 |
"Model": "Qwen/Qwen2.5-7B-Instruct",
|
452 |
"Params": "7.62B",
|
453 |
-
"Average": 3.2258974358974357,
|
454 |
"Sentiment": 3.5576923076923075,
|
455 |
"Language understanding": 3.025,
|
456 |
-
"Phraseology": 3.095
|
|
|
457 |
},
|
458 |
{
|
459 |
"Model": "microsoft/Phi-4-mini-instruct",
|
460 |
"Params": "3.84B",
|
461 |
-
"Average": 2.455769230769231,
|
462 |
"Sentiment": 2.6923076923076925,
|
463 |
"Language understanding": 2.43,
|
464 |
-
"Phraseology": 2.245
|
|
|
465 |
},
|
466 |
{
|
467 |
"Model": "gemini-2.0-flash-001",
|
468 |
"Params": "",
|
469 |
-
"Average": 4.393076923076923,
|
470 |
"Sentiment": 4.519230769230769,
|
471 |
"Language understanding": 4.32,
|
472 |
-
"Phraseology": 4.34
|
|
|
473 |
},
|
474 |
{
|
475 |
"Model": "gemini-2.0-flash-lite-001",
|
476 |
"Params": "",
|
477 |
-
"Average": 4.173589743589743,
|
478 |
"Sentiment": 4.230769230769231,
|
479 |
"Language understanding": 4.055,
|
480 |
-
"Phraseology": 4.235
|
|
|
481 |
},
|
482 |
{
|
483 |
"Model": "deepseek-ai/DeepSeek-V3 (API)",
|
484 |
"Params": "685B",
|
485 |
-
"Average": 4.034658119658119,
|
486 |
"Sentiment": 4.358974358974359,
|
487 |
"Language understanding": 4.22,
|
488 |
-
"Phraseology": 3.525
|
|
|
489 |
},
|
490 |
{
|
491 |
"Model": "google/gemma-3-27b-it (API)",
|
492 |
"Params": "27.4B",
|
493 |
-
"Average": 3.896068376068376,
|
494 |
"Sentiment": 3.878205128205128,
|
495 |
"Language understanding": 3.785,
|
496 |
-
"Phraseology": 4.025
|
|
|
497 |
}
|
498 |
-
]
|
|
|
2 |
{
|
3 |
"Model": "mistralai/Mistral-Large-Instruct-2407",
|
4 |
"Params": "123B",
|
|
|
5 |
"Sentiment": 4.230769230769231,
|
6 |
"Language understanding": 4.0,
|
7 |
+
"Phraseology": 3.86,
|
8 |
+
"Tricky questions": 3.9
|
9 |
},
|
10 |
{
|
11 |
"Model": "alpindale/WizardLM-2-8x22B",
|
12 |
"Params": "141B",
|
|
|
13 |
"Sentiment": 3.7051282051282053,
|
14 |
"Language understanding": 3.815,
|
15 |
+
"Phraseology": 4.22,
|
16 |
+
"Tricky questions": 3.9
|
17 |
},
|
18 |
{
|
19 |
"Model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
20 |
"Params": "70.6B",
|
|
|
21 |
"Sentiment": 4.326923076923077,
|
22 |
"Language understanding": 3.91,
|
23 |
+
"Phraseology": 3.25,
|
24 |
+
"Tricky questions": 3.9
|
25 |
},
|
26 |
{
|
27 |
"Model": "meta-llama/Meta-Llama-3-70B-Instruct",
|
28 |
"Params": "70.6B",
|
|
|
29 |
"Sentiment": 4.134615384615385,
|
30 |
"Language understanding": 3.82,
|
31 |
+
"Phraseology": 3.465,
|
32 |
+
"Tricky questions": 3.9
|
33 |
},
|
34 |
{
|
35 |
"Model": "speakleash/Bielik-11B-v2.3-Instruct",
|
36 |
"Params": "11.2B",
|
|
|
37 |
"Sentiment": 3.9743589743589745,
|
38 |
"Language understanding": 3.785,
|
39 |
+
"Phraseology": 3.55,
|
40 |
+
"Tricky questions": 3.9
|
41 |
},
|
42 |
{
|
43 |
"Model": "mistralai/Mixtral-8x22B-Instruct-v0.1",
|
44 |
"Params": "141B",
|
|
|
45 |
"Sentiment": 3.782051282051282,
|
46 |
"Language understanding": 3.675,
|
47 |
+
"Phraseology": 3.55,
|
48 |
+
"Tricky questions": 3.9
|
49 |
},
|
50 |
{
|
51 |
"Model": "speakleash/Bielik-11B-v2.1-Instruct",
|
52 |
"Params": "11.2B",
|
|
|
53 |
"Sentiment": 3.9551282051282053,
|
54 |
"Language understanding": 3.915,
|
55 |
+
"Phraseology": 3.105,
|
56 |
+
"Tricky questions": 3.9
|
57 |
},
|
58 |
{
|
59 |
"Model": "Qwen/Qwen2-72B-Instruct",
|
60 |
"Params": "72.7B",
|
|
|
61 |
"Sentiment": 3.7628205128205128,
|
62 |
"Language understanding": 3.89,
|
63 |
+
"Phraseology": 3.28,
|
64 |
+
"Tricky questions": 3.9
|
65 |
},
|
66 |
{
|
67 |
"Model": "speakleash/Bielik-11B-v2.0-Instruct",
|
68 |
"Params": "11.2B",
|
|
|
69 |
"Sentiment": 3.9743589743589745,
|
70 |
"Language understanding": 3.745,
|
71 |
+
"Phraseology": 3.125,
|
72 |
+
"Tricky questions": 3.9
|
73 |
},
|
74 |
{
|
75 |
"Model": "speakleash/Bielik-11B-v2.2-Instruct",
|
76 |
"Params": "11.2B",
|
|
|
77 |
"Sentiment": 3.717948717948718,
|
78 |
"Language understanding": 3.73,
|
79 |
+
"Phraseology": 3.25,
|
80 |
+
"Tricky questions": 3.9
|
81 |
},
|
82 |
{
|
83 |
"Model": "Qwen/Qwen1.5-72B-Chat",
|
84 |
"Params": "72.3B",
|
|
|
85 |
"Sentiment": 3.4743589743589745,
|
86 |
"Language understanding": 3.515,
|
87 |
+
"Phraseology": 2.975,
|
88 |
+
"Tricky questions": 3.9
|
89 |
},
|
90 |
{
|
91 |
"Model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
92 |
"Params": "8.03B",
|
|
|
93 |
"Sentiment": 3.9743589743589745,
|
94 |
"Language understanding": 3.38,
|
95 |
+
"Phraseology": 2.58,
|
96 |
+
"Tricky questions": 3.9
|
97 |
},
|
98 |
{
|
99 |
"Model": "THUDM/glm-4-9b-chat",
|
100 |
"Params": "9.4B",
|
|
|
101 |
"Sentiment": 3.58974358974359,
|
102 |
"Language understanding": 3.455,
|
103 |
+
"Phraseology": 2.78,
|
104 |
+
"Tricky questions": 3.9
|
105 |
},
|
106 |
{
|
107 |
"Model": "mistralai/Mistral-Nemo-Instruct-2407",
|
108 |
"Params": "12.2B",
|
|
|
109 |
"Sentiment": 3.641025641025641,
|
110 |
"Language understanding": 3.29,
|
111 |
+
"Phraseology": 2.74,
|
112 |
+
"Tricky questions": 3.9
|
113 |
},
|
114 |
{
|
115 |
"Model": "meta-llama/Meta-Llama-3-8B-Instruct",
|
116 |
"Params": "8.03B",
|
|
|
117 |
"Sentiment": 3.3333333333333335,
|
118 |
"Language understanding": 3.15,
|
119 |
+
"Phraseology": 3.035,
|
120 |
+
"Tricky questions": 3.9
|
121 |
},
|
122 |
{
|
123 |
"Model": "upstage/SOLAR-10.7B-Instruct-v1.0",
|
124 |
"Params": "10.7B",
|
|
|
125 |
"Sentiment": 2.967948717948718,
|
126 |
"Language understanding": 3.18,
|
127 |
+
"Phraseology": 3.255,
|
128 |
+
"Tricky questions": 3.9
|
129 |
},
|
130 |
{
|
131 |
"Model": "speakleash/Bielik-7B-Instruct-v0.1",
|
132 |
"Params": "7.24B",
|
|
|
133 |
"Sentiment": 3.58974358974359,
|
134 |
"Language understanding": 3.475,
|
135 |
+
"Phraseology": 2.315,
|
136 |
+
"Tricky questions": 3.9
|
137 |
},
|
138 |
{
|
139 |
"Model": "openchat/openchat-3.5-0106-gemma",
|
140 |
"Params": "8.54B",
|
|
|
141 |
"Sentiment": 3.730769230769231,
|
142 |
"Language understanding": 3.08,
|
143 |
+
"Phraseology": 2.445,
|
144 |
+
"Tricky questions": 3.9
|
145 |
},
|
146 |
{
|
147 |
"Model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
148 |
"Params": "46.7B",
|
|
|
149 |
"Sentiment": 3.0576923076923075,
|
150 |
"Language understanding": 3.175,
|
151 |
+
"Phraseology": 2.885,
|
152 |
+
"Tricky questions": 3.9
|
153 |
},
|
154 |
{
|
155 |
"Model": "mistralai/Mistral-7B-Instruct-v0.3",
|
156 |
"Params": "7.25B",
|
|
|
157 |
"Sentiment": 3.326923076923077,
|
158 |
"Language understanding": 3.06,
|
159 |
+
"Phraseology": 2.68,
|
160 |
+
"Tricky questions": 3.9
|
161 |
},
|
162 |
{
|
163 |
"Model": "berkeley-nest/Starling-LM-7B-alpha",
|
164 |
"Params": "7.24B",
|
|
|
165 |
"Sentiment": 3.0576923076923075,
|
166 |
"Language understanding": 2.925,
|
167 |
+
"Phraseology": 2.855,
|
168 |
+
"Tricky questions": 3.9
|
169 |
},
|
170 |
{
|
171 |
"Model": "openchat/openchat-3.5-0106",
|
172 |
"Params": "7.24B",
|
|
|
173 |
"Sentiment": 3.16025641025641,
|
174 |
"Language understanding": 2.835,
|
175 |
+
"Phraseology": 2.555,
|
176 |
+
"Tricky questions": 3.9
|
177 |
},
|
178 |
{
|
179 |
"Model": "internlm/internlm2-chat-20b",
|
180 |
"Params": "19.9B",
|
|
|
181 |
"Sentiment": 3.301282051282051,
|
182 |
"Language understanding": 2.785,
|
183 |
+
"Phraseology": 2.385,
|
184 |
+
"Tricky questions": 3.9
|
185 |
},
|
186 |
{
|
187 |
"Model": "01-ai/Yi-1.5-34B-Chat",
|
188 |
"Params": "34.4B",
|
|
|
189 |
"Sentiment": 3.076923076923077,
|
190 |
"Language understanding": 2.87,
|
191 |
+
"Phraseology": 2.38,
|
192 |
+
"Tricky questions": 3.9
|
193 |
},
|
194 |
{
|
195 |
"Model": "Voicelab/trurl-2-13b-academic",
|
196 |
"Params": "13B",
|
|
|
197 |
"Sentiment": 3.301282051282051,
|
198 |
"Language understanding": 2.755,
|
199 |
+
"Phraseology": 2.165,
|
200 |
+
"Tricky questions": 3.9
|
201 |
},
|
202 |
{
|
203 |
"Model": "google/gemma-2-2b-it",
|
204 |
"Params": "2.61B",
|
|
|
205 |
"Sentiment": 3.3974358974359,
|
206 |
"Language understanding": 2.9,
|
207 |
+
"Phraseology": 2.095,
|
208 |
+
"Tricky questions": 3.9
|
209 |
},
|
210 |
{
|
211 |
"Model": "Qwen/Qwen2.5-3B-Instruct",
|
212 |
"Params": "3.09B",
|
|
|
213 |
"Sentiment": 2.948717948717949,
|
214 |
"Language understanding": 2.455,
|
215 |
+
"Phraseology": 2.8,
|
216 |
+
"Tricky questions": 3.9
|
217 |
},
|
218 |
{
|
219 |
"Model": "NousResearch/Hermes-3-Llama-3.2-3B",
|
220 |
"Params": "3.21B",
|
|
|
221 |
"Sentiment": 2.6153846153846154,
|
222 |
"Language understanding": 2.705,
|
223 |
+
"Phraseology": 2.765,
|
224 |
+
"Tricky questions": 3.9
|
225 |
},
|
226 |
{
|
227 |
"Model": "ibm-granite/granite-3.1-2b-instruct",
|
228 |
"Params": "2.53B",
|
|
|
229 |
"Sentiment": 3.076923076923077,
|
230 |
"Language understanding": 2.235,
|
231 |
+
"Phraseology": 1.88,
|
232 |
+
"Tricky questions": 3.9
|
233 |
},
|
234 |
{
|
235 |
"Model": "meta-llama/Llama-3.2-1B-Instruct",
|
236 |
"Params": "1.24B",
|
|
|
237 |
"Sentiment": 3.076923076923077,
|
238 |
"Language understanding": 1.735,
|
239 |
+
"Phraseology": 2.34,
|
240 |
+
"Tricky questions": 3.9
|
241 |
},
|
242 |
{
|
243 |
"Model": "microsoft/Phi-3.5-mini-instruct",
|
244 |
"Params": "3.82B",
|
|
|
245 |
"Sentiment": 2.435897435897436,
|
246 |
"Language understanding": 2.135,
|
247 |
+
"Phraseology": 2.425,
|
248 |
+
"Tricky questions": 3.9
|
249 |
},
|
250 |
{
|
251 |
"Model": "meta-llama/Llama-3.2-3B-Instruct",
|
252 |
"Params": "3.21B",
|
|
|
253 |
"Sentiment": 2.7564102564102564,
|
254 |
"Language understanding": 2.295,
|
255 |
+
"Phraseology": 1.72,
|
256 |
+
"Tricky questions": 3.9
|
257 |
},
|
258 |
{
|
259 |
"Model": "h2oai/h2o-danube2-1.8b-chat",
|
260 |
"Params": "1.83B",
|
|
|
261 |
"Sentiment": 2.371794871794872,
|
262 |
"Language understanding": 1.595,
|
263 |
+
"Phraseology": 2.47,
|
264 |
+
"Tricky questions": 3.9
|
265 |
},
|
266 |
{
|
267 |
"Model": "Qwen/Qwen2.5-1.5B-Instruct",
|
268 |
"Params": "1.54B",
|
|
|
269 |
"Sentiment": 2.7948717948717947,
|
270 |
"Language understanding": 1.35,
|
271 |
+
"Phraseology": 2.225,
|
272 |
+
"Tricky questions": 3.9
|
273 |
},
|
274 |
{
|
275 |
"Model": "utter-project/EuroLLM-1.7B-Instruct",
|
276 |
"Params": "1.66B",
|
|
|
277 |
"Sentiment": 2.243589743589744,
|
278 |
"Language understanding": 1.79,
|
279 |
+
"Phraseology": 2.26,
|
280 |
+
"Tricky questions": 3.9
|
281 |
},
|
282 |
{
|
283 |
"Model": "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct",
|
284 |
"Params": "2.41B",
|
|
|
285 |
"Sentiment": 1.9423076923076923,
|
286 |
"Language understanding": 2.1155778894472363,
|
287 |
+
"Phraseology": 2.130653266331658,
|
288 |
+
"Tricky questions": 3.9
|
289 |
},
|
290 |
{
|
291 |
"Model": "HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
292 |
"Params": "1.71B",
|
|
|
293 |
"Sentiment": 2.275641025641025,
|
294 |
"Language understanding": 1.1,
|
295 |
+
"Phraseology": 2.355,
|
296 |
+
"Tricky questions": 3.9
|
297 |
},
|
298 |
{
|
299 |
"Model": "Qwen/Qwen2.5-0.5B-Instruct",
|
300 |
"Params": "0.49B",
|
|
|
301 |
"Sentiment": 1.955128205128205,
|
302 |
"Language understanding": 0.835,
|
303 |
+
"Phraseology": 2.595,
|
304 |
+
"Tricky questions": 3.9
|
305 |
},
|
306 |
{
|
307 |
"Model": "CYFRAGOVPL/Llama-PLLuM-70B-chat",
|
308 |
"Params": "70.6B",
|
|
|
309 |
"Sentiment": 3.94,
|
310 |
"Language understanding": 3.61,
|
311 |
+
"Phraseology": 3.35,
|
312 |
+
"Tricky questions": 3.9
|
313 |
},
|
314 |
{
|
315 |
"Model": "CYFRAGOVPL/PLLuM-8x7B-nc-instruct",
|
316 |
"Params": "46.7B",
|
|
|
317 |
"Sentiment": 3.88,
|
318 |
"Language understanding": 3.59,
|
319 |
+
"Phraseology": 3.22,
|
320 |
+
"Tricky questions": 3.9
|
321 |
},
|
322 |
{
|
323 |
"Model": "CYFRAGOVPL/Llama-PLLuM-70B-instruct",
|
324 |
"Params": "70.6B",
|
|
|
325 |
"Sentiment": 3.78,
|
326 |
"Language understanding": 3.63,
|
327 |
+
"Phraseology": 3.26,
|
328 |
+
"Tricky questions": 3.9
|
329 |
},
|
330 |
{
|
331 |
"Model": "CYFRAGOVPL/PLLuM-8x7B-instruct",
|
332 |
"Params": "46.7B",
|
|
|
333 |
"Sentiment": 3.59,
|
334 |
"Language understanding": 3.47,
|
335 |
+
"Phraseology": 3.46,
|
336 |
+
"Tricky questions": 3.9
|
337 |
},
|
338 |
{
|
339 |
"Model": "CYFRAGOVPL/PLLuM-12B-instruct",
|
340 |
"Params": "12.2B",
|
|
|
341 |
"Sentiment": 3.71,
|
342 |
"Language understanding": 3.17,
|
343 |
+
"Phraseology": 3.59,
|
344 |
+
"Tricky questions": 3.9
|
345 |
},
|
346 |
{
|
347 |
"Model": "CYFRAGOVPL/PLLuM-8x7B-nc-chat",
|
348 |
"Params": "46.7B",
|
|
|
349 |
"Sentiment": 3.76,
|
350 |
"Language understanding": 3.48,
|
351 |
+
"Phraseology": 3.08,
|
352 |
+
"Tricky questions": 3.9
|
353 |
},
|
354 |
{
|
355 |
"Model": "CYFRAGOVPL/PLLuM-8x7B-chat",
|
356 |
"Params": "46.7B",
|
|
|
357 |
"Sentiment": 3.44,
|
358 |
"Language understanding": 3.45,
|
359 |
+
"Phraseology": 3.35,
|
360 |
+
"Tricky questions": 3.9
|
361 |
},
|
362 |
{
|
363 |
"Model": "CYFRAGOVPL/PLLuM-12B-chat",
|
364 |
"Params": "12.2B",
|
|
|
365 |
"Sentiment": 3.32,
|
366 |
"Language understanding": 3.21,
|
367 |
+
"Phraseology": 3.43,
|
368 |
+
"Tricky questions": 3.9
|
369 |
},
|
370 |
{
|
371 |
"Model": "CYFRAGOVPL/PLLuM-12B-nc-instruct",
|
372 |
"Params": "12.2B",
|
|
|
373 |
"Sentiment": 3.24,
|
374 |
"Language understanding": 3.31,
|
375 |
+
"Phraseology": 3.32,
|
376 |
+
"Tricky questions": 3.9
|
377 |
},
|
378 |
{
|
379 |
"Model": "CYFRAGOVPL/Llama-PLLuM-8B-instruct",
|
380 |
"Params": "8.03B",
|
|
|
381 |
"Sentiment": 3.24,
|
382 |
"Language understanding": 2.90,
|
383 |
+
"Phraseology": 3.46,
|
384 |
+
"Tricky questions": 3.9
|
385 |
},
|
386 |
{
|
387 |
"Model": "CYFRAGOVPL/Llama-PLLuM-8B-chat",
|
388 |
"Params": "8.03B",
|
|
|
389 |
"Sentiment": 3.13,
|
390 |
"Language understanding": 2.93,
|
391 |
+
"Phraseology": 3.36,
|
392 |
+
"Tricky questions": 3.9
|
393 |
},
|
394 |
{
|
395 |
"Model": "CYFRAGOVPL/PLLuM-12B-nc-chat",
|
396 |
"Params": "12.2B",
|
|
|
397 |
"Sentiment": 3.22,
|
398 |
"Language understanding": 3.23,
|
399 |
+
"Phraseology": 3.54,
|
400 |
+
"Tricky questions": 3.9
|
401 |
},
|
402 |
{
|
403 |
"Model": "Qwen/Qwen2.5-72B-Instruct",
|
404 |
"Params": "72.7B",
|
|
|
405 |
"Sentiment": 4.076923076923077,
|
406 |
"Language understanding": 3.97,
|
407 |
+
"Phraseology": 3.93,
|
408 |
+
"Tricky questions": 3.9
|
409 |
},
|
410 |
{
|
411 |
"Model": "Qwen/Qwen2.5-32B-Instruct",
|
412 |
"Params": "32.8B",
|
|
|
413 |
"Sentiment": 3.8141025641025643,
|
414 |
"Language understanding": 3.565,
|
415 |
+
"Phraseology": 4.035,
|
416 |
+
"Tricky questions": 3.9
|
417 |
},
|
418 |
{
|
419 |
"Model": "mistralai/Mistral-Small-24B-Instruct-2501",
|
420 |
"Params": "23.6B",
|
|
|
421 |
"Sentiment": 3.91025641025641,
|
422 |
"Language understanding": 3.6,
|
423 |
+
"Phraseology": 3.875,
|
424 |
+
"Tricky questions": 3.9
|
425 |
},
|
426 |
{
|
427 |
"Model": "meta-llama/Llama-3.3-70B-Instruct",
|
428 |
"Params": "70.6B",
|
|
|
429 |
"Sentiment": 4.294871794871795,
|
430 |
"Language understanding": 3.865,
|
431 |
+
"Phraseology": 3.04,
|
432 |
+
"Tricky questions": 3.9
|
433 |
},
|
434 |
{
|
435 |
"Model": "Qwen/Qwen2.5-14B-Instruct",
|
436 |
"Params": "14.8B",
|
|
|
437 |
"Sentiment": 3.91025641025641,
|
438 |
"Language understanding": 3.565,
|
439 |
+
"Phraseology": 3.37,
|
440 |
+
"Tricky questions": 3.9
|
441 |
},
|
442 |
{
|
443 |
"Model": "microsoft/phi-4",
|
444 |
"Params": "14.7B",
|
|
|
445 |
"Sentiment": 3.717948717948718,
|
446 |
"Language understanding": 3.54,
|
447 |
+
"Phraseology": 3.235,
|
448 |
+
"Tricky questions": 3.9
|
449 |
},
|
450 |
{
|
451 |
"Model": "Qwen/Qwen2.5-7B-Instruct",
|
452 |
"Params": "7.62B",
|
|
|
453 |
"Sentiment": 3.5576923076923075,
|
454 |
"Language understanding": 3.025,
|
455 |
+
"Phraseology": 3.095,
|
456 |
+
"Tricky questions": 3.9
|
457 |
},
|
458 |
{
|
459 |
"Model": "microsoft/Phi-4-mini-instruct",
|
460 |
"Params": "3.84B",
|
|
|
461 |
"Sentiment": 2.6923076923076925,
|
462 |
"Language understanding": 2.43,
|
463 |
+
"Phraseology": 2.245,
|
464 |
+
"Tricky questions": 3.9
|
465 |
},
|
466 |
{
|
467 |
"Model": "gemini-2.0-flash-001",
|
468 |
"Params": "",
|
|
|
469 |
"Sentiment": 4.519230769230769,
|
470 |
"Language understanding": 4.32,
|
471 |
+
"Phraseology": 4.34,
|
472 |
+
"Tricky questions": 3.9
|
473 |
},
|
474 |
{
|
475 |
"Model": "gemini-2.0-flash-lite-001",
|
476 |
"Params": "",
|
|
|
477 |
"Sentiment": 4.230769230769231,
|
478 |
"Language understanding": 4.055,
|
479 |
+
"Phraseology": 4.235,
|
480 |
+
"Tricky questions": 3.9
|
481 |
},
|
482 |
{
|
483 |
"Model": "deepseek-ai/DeepSeek-V3 (API)",
|
484 |
"Params": "685B",
|
|
|
485 |
"Sentiment": 4.358974358974359,
|
486 |
"Language understanding": 4.22,
|
487 |
+
"Phraseology": 3.525,
|
488 |
+
"Tricky questions": 3.9
|
489 |
},
|
490 |
{
|
491 |
"Model": "google/gemma-3-27b-it (API)",
|
492 |
"Params": "27.4B",
|
|
|
493 |
"Sentiment": 3.878205128205128,
|
494 |
"Language understanding": 3.785,
|
495 |
+
"Phraseology": 4.025,
|
496 |
+
"Tricky questions": 3.9
|
497 |
}
|
498 |
+
]
|
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
pandas
|
2 |
seaborn
|
3 |
plotly
|
4 |
-
streamlit
|
5 |
-
st_social_media_links
|
|
|
1 |
pandas
|
2 |
seaborn
|
3 |
plotly
|
4 |
+
streamlit==1.43
|
5 |
+
st_social_media_links
|