denoise_and_diarization / utils /diarization_pipeline.py
agorlanov
train_fix
3ff6c9f
raw
history blame
23.2 kB
from copy import deepcopy
from os.path import basename, splitext
import librosa
import numpy as np
import pandas as pd
import soundfile as sf
import torch
import torchaudio
from scipy.ndimage import gaussian_filter
from sklearn.cluster import AgglomerativeClustering, KMeans, SpectralClustering
from sklearn.metrics import pairwise_distances
from speechbrain.pretrained import EncoderClassifier
def similarity_matrix(embeds, metric="cosine"):
return pairwise_distances(embeds, metric=metric)
def cluster_AHC(embeds, n_clusters=None, threshold=None, metric="cosine", **kwargs):
"""
Cluster embeds using Agglomerative Hierarchical Clustering
"""
if n_clusters is None:
assert threshold, "If num_clusters is not defined, threshold must be defined"
S = similarity_matrix(embeds, metric=metric)
if n_clusters is None:
cluster_model = AgglomerativeClustering(
n_clusters=None,
affinity="precomputed",
linkage="average",
compute_full_tree=True,
distance_threshold=threshold,
)
return cluster_model.fit_predict(S)
else:
cluster_model = AgglomerativeClustering(
n_clusters=n_clusters, affinity="precomputed", linkage="average"
)
return cluster_model.fit_predict(S)
##########################################
# Spectral clustering
# A lot of these methods are lifted from
# https://github.com/wq2012/SpectralCluster
##########################################
def cluster_SC(embeds, n_clusters=None, threshold=None, enhance_sim=True, **kwargs):
"""
Cluster embeds using Spectral Clustering
"""
if n_clusters is None:
assert threshold, "If num_clusters is not defined, threshold must be defined"
S = compute_affinity_matrix(embeds)
if enhance_sim:
S = sim_enhancement(S)
if n_clusters is None:
(eigenvalues, eigenvectors) = compute_sorted_eigenvectors(S)
# Get number of clusters.
k = compute_number_of_clusters(eigenvalues, 100, threshold)
# Get spectral embeddings.
spectral_embeddings = eigenvectors[:, :k]
# Run K-Means++ on spectral embeddings.
# Note: The correct way should be using a K-Means implementation
# that supports customized distance measure such as cosine distance.
# This implemention from scikit-learn does NOT, which is inconsistent
# with the paper.
kmeans_clusterer = KMeans(
n_clusters=k, init="k-means++", max_iter=300, random_state=0
)
labels = kmeans_clusterer.fit_predict(spectral_embeddings)
return labels
else:
cluster_model = SpectralClustering(
n_clusters=n_clusters, affinity="precomputed"
)
return cluster_model.fit_predict(S)
def diagonal_fill(A):
"""
Sets the diagonal elemnts of the matrix to the max of each row
"""
np.fill_diagonal(A, 0.0)
A[np.diag_indices(A.shape[0])] = np.max(A, axis=1)
return A
def gaussian_blur(A, sigma=1.0):
"""
Does a gaussian blur on the affinity matrix
"""
return gaussian_filter(A, sigma=sigma)
def row_threshold_mult(A, p=0.95, mult=0.01):
"""
For each row multiply elements smaller than the row's p'th percentile by mult
"""
percentiles = np.percentile(A, p * 100, axis=1)
mask = A < percentiles[:, np.newaxis]
A = (mask * mult * A) + (~mask * A)
return A
def symmetrization(A):
"""
Symmeterization: Y_{i,j} = max(S_{ij}, S_{ji})
"""
return np.maximum(A, A.T)
def diffusion(A):
"""
Diffusion: Y <- YY^T
"""
return np.dot(A, A.T)
def row_max_norm(A):
"""
Row-wise max normalization: S_{ij} = Y_{ij} / max_k(Y_{ik})
"""
maxes = np.amax(A, axis=1)
return A / maxes
def sim_enhancement(A):
func_order = [
diagonal_fill,
gaussian_blur,
row_threshold_mult,
symmetrization,
diffusion,
row_max_norm,
]
for f in func_order:
A = f(A)
return A
def compute_affinity_matrix(X):
"""Compute the affinity matrix from data.
Note that the range of affinity is [0,1].
Args:
X: numpy array of shape (n_samples, n_features)
Returns:
affinity: numpy array of shape (n_samples, n_samples)
"""
# Normalize the data.
l2_norms = np.linalg.norm(X, axis=1)
X_normalized = X / l2_norms[:, None]
# Compute cosine similarities. Range is [-1,1].
cosine_similarities = np.matmul(X_normalized, np.transpose(X_normalized))
# Compute the affinity. Range is [0,1].
# Note that this step is not mentioned in the paper!
affinity = (cosine_similarities + 1.0) / 2.0
return affinity
def compute_sorted_eigenvectors(A):
"""Sort eigenvectors by the real part of eigenvalues.
Args:
A: the matrix to perform eigen analysis with shape (M, M)
Returns:
w: sorted eigenvalues of shape (M,)
v: sorted eigenvectors, where v[;, i] corresponds to ith largest
eigenvalue
"""
# Eigen decomposition.
eigenvalues, eigenvectors = np.linalg.eig(A)
eigenvalues = eigenvalues.real
eigenvectors = eigenvectors.real
# Sort from largest to smallest.
index_array = np.argsort(-eigenvalues)
# Re-order.
w = eigenvalues[index_array]
v = eigenvectors[:, index_array]
return w, v
def compute_number_of_clusters(eigenvalues, max_clusters=None, stop_eigenvalue=1e-2):
"""Compute number of clusters using EigenGap principle.
Args:
eigenvalues: sorted eigenvalues of the affinity matrix
max_clusters: max number of clusters allowed
stop_eigenvalue: we do not look at eigen values smaller than this
Returns:
number of clusters as an integer
"""
max_delta = 0
max_delta_index = 0
range_end = len(eigenvalues)
if max_clusters and max_clusters + 1 < range_end:
range_end = max_clusters + 1
for i in range(1, range_end):
if eigenvalues[i - 1] < stop_eigenvalue:
break
delta = eigenvalues[i - 1] / eigenvalues[i]
if delta > max_delta:
max_delta = delta
max_delta_index = i
return max_delta_index
class Diarizer:
def __init__(
self, device='cuda:0', embed_model="xvec", cluster_method="sc", window=1.5, period=0.75
):
self.device = device
assert embed_model in [
"xvec",
"ecapa",
], "Only xvec and ecapa are supported options"
assert cluster_method in [
"ahc",
"sc",
], "Only ahc and sc in the supported clustering options"
if cluster_method == "ahc":
self.cluster = cluster_AHC
if cluster_method == "sc":
self.cluster = cluster_SC
self.vad_model, self.get_speech_ts = self.setup_VAD()
self.run_opts = ({"device": self.device})
if embed_model == "ecapa":
self.embed_model = EncoderClassifier.from_hparams(
source="speechbrain/spkrec-ecapa-voxceleb",
savedir="pretrained_models/spkrec-ecapa-voxceleb",
run_opts=self.run_opts,
)
self.window = window
self.period = period
def setup_VAD(self):
model, utils = torch.hub.load(
repo_or_dir="snakers4/silero-vad", model="silero_vad"
)
# force_reload=True)
get_speech_ts = utils[0]
return model, get_speech_ts
def vad(self, signal):
"""
Runs the VAD model on the signal
"""
return self.get_speech_ts(signal.to(self.device), self.vad_model.to(self.device))
def windowed_embeds(self, signal, fs, window=1.5, period=0.75):
"""
Calculates embeddings for windows across the signal
window: length of the window, in seconds
period: jump of the window, in seconds
returns: embeddings, segment info
"""
len_window = int(window * fs)
len_period = int(period * fs)
len_signal = signal.shape[1]
# Get the windowed segments
segments = []
start = 0
while start + len_window < len_signal:
segments.append([start, start + len_window])
start += len_period
segments.append([start, len_signal - 1])
embeds = []
with torch.no_grad():
for i, j in segments:
signal_seg = signal[:, i:j]
seg_embed = self.embed_model.encode_batch(signal_seg)
embeds.append(seg_embed.squeeze(0).squeeze(0).cpu().numpy())
embeds = np.array(embeds)
return embeds, np.array(segments)
def recording_embeds(self, signal, fs, speech_ts):
"""
Takes signal and VAD output (speech_ts) and produces windowed embeddings
returns: embeddings, segment info
"""
all_embeds = []
all_segments = []
for utt in speech_ts:
start = utt["start"]
end = utt["end"]
utt_signal = signal[:, start:end]
utt_embeds, utt_segments = self.windowed_embeds(
utt_signal, fs, self.window, self.period
)
all_embeds.append(utt_embeds)
all_segments.append(utt_segments + start)
all_embeds = np.concatenate(all_embeds, axis=0)
all_segments = np.concatenate(all_segments, axis=0)
return all_embeds, all_segments
@staticmethod
def join_segments(cluster_labels, segments, tolerance=5):
"""
Joins up same speaker segments, resolves overlap conflicts
Uses the midpoint for overlap conflicts
tolerance allows for very minimally separated segments to be combined
(in samples)
"""
assert len(cluster_labels) == len(segments)
new_segments = [
{"start": segments[0][0], "end": segments[0][1], "label": cluster_labels[0]}
]
for l, seg in zip(cluster_labels[1:], segments[1:]):
start = seg[0]
end = seg[1]
protoseg = {"start": seg[0], "end": seg[1], "label": l}
if start <= new_segments[-1]["end"]:
# If segments overlap
if l == new_segments[-1]["label"]:
# If overlapping segment has same label
new_segments[-1]["end"] = end
else:
# If overlapping segment has diff label
# Resolve by setting new start to midpoint
# And setting last segment end to midpoint
overlap = new_segments[-1]["end"] - start
midpoint = start + overlap // 2
new_segments[-1]["end"] = midpoint
protoseg["start"] = midpoint
new_segments.append(protoseg)
else:
# If there's no overlap just append
new_segments.append(protoseg)
return new_segments
@staticmethod
def make_output_seconds(cleaned_segments, fs):
"""
Convert cleaned segments to readable format in seconds
"""
for seg in cleaned_segments:
seg["start_sample"] = seg["start"]
seg["end_sample"] = seg["end"]
seg["start"] = seg["start"] / fs
seg["end"] = seg["end"] / fs
return cleaned_segments
def diarize(
self,
wav_file,
num_speakers=2,
threshold=None,
silence_tolerance=0.2,
enhance_sim=True,
extra_info=False,
outfile=None,
):
"""
Diarize a 16khz mono wav file, produces list of segments
Inputs:
wav_file (path): Path to input audio file
num_speakers (int) or NoneType: Number of speakers to cluster to
threshold (float) or NoneType: Threshold to cluster to if
num_speakers is not defined
silence_tolerance (float): Same speaker segments which are close enough together
by silence_tolerance will be joined into a single segment
enhance_sim (bool): Whether or not to perform affinity matrix enhancement
during spectral clustering
If self.cluster_method is 'ahc' this option does nothing.
extra_info (bool): Whether or not to return the embeddings and raw segments
in addition to segments
outfile (path): If specified will output an RTTM file
Outputs:
If extra_info is False:
segments (list): List of dicts with segment information
{
'start': Start time of segment in seconds,
'start_sample': Starting index of segment,
'end': End time of segment in seconds,
'end_sample' Ending index of segment,
'label': Cluster label of segment
}
If extra_info is True:
dict: { 'segments': segments (list): List of dicts with segment information
{
'start': Start time of segment in seconds,
'start_sample': Starting index of segment,
'end': End time of segment in seconds,
'end_sample' Ending index of segment,
'label': Cluster label of segment
},
'embeds': embeddings (np.array): Array of embeddings, each row corresponds to a segment,
'segments': segments (list): indexes for start and end frame for each embed in embeds,
'cluster_labels': cluster_labels (list): cluster label for each embed in embeds
}
Uses AHC/SC to cluster
"""
signal, fs = torchaudio.load(wav_file)
if len(signal) == 2:
signal = signal[:1, :]
if fs != 16000:
signal = torchaudio.functional.resample(signal, fs, 16000)
fs = 16000
speech_ts = self.vad(signal[0])
if len(speech_ts) >= 1:
embeds, segments = self.recording_embeds(signal, fs, speech_ts)
if len(embeds) > 1:
cluster_labels = self.cluster(
embeds,
n_clusters=num_speakers,
threshold=threshold,
enhance_sim=enhance_sim,
)
else:
cluster_labels = np.zeros(len(embeds), dtype=int)
cleaned_segments = self.join_segments(cluster_labels, segments)
cleaned_segments = self.make_output_seconds(cleaned_segments, fs)
cleaned_segments = self.join_samespeaker_segments(
cleaned_segments, silence_tolerance=silence_tolerance
)
if outfile:
self.rttm_output(cleaned_segments, splitext(basename(wav_file))[0], outfile=outfile)
if not extra_info:
return cleaned_segments
else:
return {"clean_segments": cleaned_segments,
"embeds": embeds,
"segments": segments,
"cluster_labels": cluster_labels}
else:
print("Couldn't find any speech during VAD")
return {}
@staticmethod
def rttm_output(segments, recname, outfile=None):
assert outfile, "Please specify an outfile"
rttm_line = "SPEAKER {} 0 {} {} <NA> <NA> {} <NA> <NA>\n"
with open(outfile, "w") as fp:
for seg in segments:
start = seg["start"]
offset = seg["end"] - seg["start"]
label = seg["label"]
line = rttm_line.format(recname, start, offset, label)
fp.write(line)
@staticmethod
def join_samespeaker_segments(segments, silence_tolerance=0.5):
"""
Join up segments that belong to the same speaker,
even if there is a duration of silence in between them.
If the silence is greater than silence_tolerance, does not join up
"""
new_segments = [segments[0]]
for seg in segments[1:]:
if seg["label"] == new_segments[-1]["label"]:
if new_segments[-1]["end"] + silence_tolerance >= seg["start"]:
new_segments[-1]["end"] = seg["end"]
new_segments[-1]["end_sample"] = seg["end_sample"]
else:
new_segments.append(seg)
else:
new_segments.append(seg)
return new_segments
@staticmethod
def match_diarization_to_transcript(segments, text_segments):
"""
Match the output of .diarize to word segments
"""
text_starts, text_ends, text_segs = [], [], []
for s in text_segments:
text_starts.append(s["start"])
text_ends.append(s["end"])
text_segs.append(s["text"])
text_starts = np.array(text_starts)
text_ends = np.array(text_ends)
text_segs = np.array(text_segs)
# Get the earliest start from either diar output or asr output
earliest_start = np.min([text_starts[0], segments[0]["start"]])
worded_segments = segments.copy()
worded_segments[0]["start"] = earliest_start
cutoffs = []
for seg in worded_segments:
end_idx = np.searchsorted(text_ends, seg["end"], side="left") - 1
cutoffs.append(end_idx)
indexes = [[0, cutoffs[0]]]
for c in cutoffs[1:]:
indexes.append([indexes[-1][-1], c])
indexes[-1][-1] = len(text_segs)
final_segments = []
for i, seg in enumerate(worded_segments):
s_idx, e_idx = indexes[i]
words = text_segs[s_idx:e_idx]
newseg = deepcopy(seg)
newseg["words"] = " ".join(words)
final_segments.append(newseg)
return final_segments
def match_diarization_to_transcript_ctm(self, segments, ctm_file):
"""
Match the output of .diarize to a ctm file produced by asr
"""
ctm_df = pd.read_csv(
ctm_file,
delimiter=" ",
names=["utt", "channel", "start", "offset", "word", "confidence"],
)
ctm_df["end"] = ctm_df["start"] + ctm_df["offset"]
starts = ctm_df["start"].values
ends = ctm_df["end"].values
words = ctm_df["word"].values
# Get the earliest start from either diar output or asr output
earliest_start = np.min([ctm_df["start"].values[0], segments[0]["start"]])
worded_segments = self.join_samespeaker_segments(segments)
worded_segments[0]["start"] = earliest_start
cutoffs = []
for seg in worded_segments:
end_idx = np.searchsorted(ctm_df["end"].values, seg["end"], side="left") - 1
cutoffs.append(end_idx)
indexes = [[0, cutoffs[0]]]
for c in cutoffs[1:]:
indexes.append([indexes[-1][-1], c])
indexes[-1][-1] = len(words)
final_segments = []
for i, seg in enumerate(worded_segments):
s_idx, e_idx = indexes[i]
words = ctm_df["word"].values[s_idx:e_idx]
seg["words"] = " ".join(words)
if len(words) >= 1:
final_segments.append(seg)
else:
print(
"Removed segment between {} and {} as no words were matched".format(
seg["start"], seg["end"]
)
)
return final_segments
@staticmethod
def nice_text_output(worded_segments, outfile):
with open(outfile, "w") as fp:
for seg in worded_segments:
fp.write(
"[{} to {}] Speaker {}: \n".format(
round(seg["start"], 2), round(seg["end"], 2), seg["label"]
)
)
fp.write("{}\n\n".format(seg["words"]))
class DiarizationPipeline:
def __init__(self, device=None):
super(DiarizationPipeline, self).__init__()
self.diar = Diarizer(
device=device,
embed_model='ecapa', # supported types: ['xvec', 'ecapa']
cluster_method='ahc', # supported types: ['ahc', 'sc']
window=1, # size of window to extract embeddings (in seconds)
period=0.1 # hop of window (in seconds)
)
def save_speaker_audios(self, segments: list, audio_path: str):
"""
:param segments: result diarization timestamps
:param audio_path:
:return: out_wav_paths: list of audio paths
"""
signal, sr = librosa.load(audio_path, sr=None, mono=True)
out_wav_paths = []
segments = pd.DataFrame(segments)
segments = self.filter_small_speech(segments)
sort_labels = segments.groupby(['label'])['duration'].sum().nlargest(len(set(segments.label))).index
for indx, label in enumerate(sort_labels):
temp_df = segments[segments.label == label]
output_signal = []
for _, r in temp_df.iterrows():
start = int(r["start"] * sr)
end = int(r["end"] * sr)
output_signal.append(signal[start:end])
out_wav_path = audio_path.replace('.wav', f'_{indx}.wav')
sf.write(out_wav_path, np.concatenate(output_signal), sr)
out_wav_paths.append(out_wav_path)
return out_wav_paths
def filter_small_speech(self, segments):
segments['duration'] = segments.end - segments.start
durs = segments.groupby('label').sum()
labels = durs[durs['duration'] / durs.sum()['duration'] > 0.015].index
return segments[segments.label.isin(labels)]
def __call__(self, input_wav_path: str)-> dict:
segments = self.diar.diarize(input_wav_path,
num_speakers=None,
threshold=9e-1, )
if segments != {}:
output_wav_paths = self.save_speaker_audios(segments, input_wav_path)
return {'count_speakers': max([i['label'] for i in segments]) + 1, 'diarization_segments': segments,
'output_diar_audio_paths': output_wav_paths}
else:
return {}
if __name__ == '__main__':
diarization = DiarizationPipeline(device='cuda:0')
diarization('../dialog.mp3')