Spaces:
Sleeping
Sleeping
from dotenv import load_dotenv | |
import gradio as gr | |
import os | |
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings | |
from llama_index.llms.huggingface import HuggingFaceInferenceAPI | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
import firebase_admin | |
from firebase_admin import db, credentials | |
import datetime | |
import uuid | |
import random | |
# Load environment variables | |
load_dotenv() | |
# Initialize Firebase with provided credentials and URL | |
cred = credentials.Certificate("redfernstech-fd8fe-firebase-adminsdk-g9vcn-0537b4efd6.json") | |
firebase_admin.initialize_app(cred, {"databaseURL": "https://redfernstech-fd8fe-default-rtdb.firebaseio.com/"}) | |
# Configure Llama index settings | |
Settings.llm = HuggingFaceInferenceAPI( | |
model_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", | |
context_window=3000, | |
token=os.getenv("HF_TOKEN"), | |
max_new_tokens=512, | |
generate_kwargs={"temperature": 0.1}, | |
) | |
Settings.embed_model = HuggingFaceEmbedding( | |
model_name="BAAI/bge-small-en-v1.5" | |
) | |
# Define directories | |
PERSIST_DIR = "db" | |
PDF_DIRECTORY = 'data' | |
# Ensure directories exist | |
os.makedirs(PDF_DIRECTORY, exist_ok=True) | |
os.makedirs(PERSIST_DIR, exist_ok=True) | |
# Dictionary to store chat histories for different sessions | |
session_chat_histories = {} | |
def select_random_name(): | |
names = ['Clara', 'Lily'] | |
return random.choice(names) | |
def data_ingestion_from_directory(): | |
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() | |
storage_context = StorageContext.from_defaults() | |
index = VectorStoreIndex.from_documents(documents) | |
index.storage_context.persist(persist_dir=PERSIST_DIR) | |
def handle_query(session_id, query): | |
chat_text_qa_msgs = [ | |
( | |
"user", | |
""" | |
As Clara, your goal is to provide code to the user. | |
Your task is to give code to the model and offer guidance on creating a website using Django, HTML, CSS, and Bootstrap. | |
{context_str} | |
Question: | |
{query_str} | |
""" | |
) | |
] | |
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
index = load_index_from_storage(storage_context) | |
context_str = "" | |
if session_id in session_chat_histories: | |
for past_query, response in reversed(session_chat_histories[session_id]): | |
if past_query.strip(): | |
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" | |
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) | |
answer = query_engine.query(query) | |
if hasattr(answer, 'response'): | |
response = answer.response | |
elif isinstance(answer, dict) and 'response' in answer: | |
response = answer['response'] | |
else: | |
response = "Sorry, I couldn't find an answer." | |
if session_id not in session_chat_histories: | |
session_chat_histories[session_id] = [] | |
session_chat_histories[session_id].append((query, response)) | |
message_data = { | |
"query": query, | |
"response": response, | |
"timestamp": datetime.datetime.now().isoformat() | |
} | |
save_chat_message(session_id, message_data) | |
return response | |
def save_chat_message(session_id, message_data): | |
ref = db.reference(f'/chat_history/{session_id}') | |
ref.push().set(message_data) | |
def chat_interface(message, history): | |
# Retrieve or create a new session ID based on history | |
session_id = history[0][1] if history and history[0][1] else str(uuid.uuid4()) | |
history.append((message, session_id)) # Append the session ID to history | |
response = handle_query(session_id, message) | |
return response, history | |
css = ''' | |
.circle-logo { | |
display: inline-block; | |
width: 40px; | |
height: 40px; | |
border-radius: 50%; | |
overflow: hidden; | |
margin-right: 10px; | |
vertical-align: middle; | |
} | |
.circle-logo img { | |
width: 100%; | |
height: 100%; | |
object-fit: cover; | |
} | |
.response-with-logo { | |
display: flex; | |
align-items: center; | |
margin-bottom: 10px; | |
} | |
footer { | |
display: none !important; | |
background-color: #F8D7DA; | |
} | |
label.svelte-1b6s6s {display: none} | |
''' | |
# Load data and start Gradio interface | |
print("Processing PDF ingestion from directory:", PDF_DIRECTORY) | |
data_ingestion_from_directory() | |
gr.ChatInterface(fn=chat_interface, | |
css=css, | |
description="Clara", | |
clear_btn=None, undo_btn=None, retry_btn=None).launch() | |