Spaces:
Running
Running
# ported from: https://github.com/neonbjb/tortoise-tts | |
import functools | |
import math | |
import random | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from transformers import GPT2Config | |
from TTS.tts.layers.xtts.gpt_inference import GPT2InferenceModel | |
from TTS.tts.layers.xtts.latent_encoder import ConditioningEncoder | |
from TTS.tts.layers.xtts.perceiver_encoder import PerceiverResampler | |
def null_position_embeddings(range, dim): | |
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device) | |
class LearnedPositionEmbeddings(nn.Module): | |
def __init__(self, seq_len, model_dim, init=0.02, relative=False): | |
super().__init__() | |
# nn.Embedding | |
self.emb = torch.nn.Embedding(seq_len, model_dim) | |
# Initializing this way is standard for GPT-2 | |
self.emb.weight.data.normal_(mean=0.0, std=init) | |
self.relative = relative | |
self.seq_len = seq_len | |
def forward(self, x): | |
sl = x.shape[1] | |
if self.relative: | |
start = random.randint(sl, self.seq_len) - sl | |
return self.emb(torch.arange(start, start + sl, device=x.device)) | |
else: | |
return self.emb(torch.arange(0, sl, device=x.device)) | |
def get_fixed_embedding(self, ind, dev): | |
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0) | |
def build_hf_gpt_transformer( | |
layers, | |
model_dim, | |
heads, | |
max_mel_seq_len, | |
max_text_seq_len, | |
max_prompt_len, | |
checkpointing, | |
): | |
""" | |
GPT-2 implemented by the HuggingFace library. | |
""" | |
from transformers import GPT2Config, GPT2Model | |
gpt_config = GPT2Config( | |
vocab_size=256, # Unused. | |
n_positions=max_mel_seq_len + max_text_seq_len + max_prompt_len, | |
n_ctx=max_mel_seq_len + max_text_seq_len + max_prompt_len, | |
n_embd=model_dim, | |
n_layer=layers, | |
n_head=heads, | |
gradient_checkpointing=checkpointing, | |
use_cache=not checkpointing, | |
) | |
gpt = GPT2Model(gpt_config) | |
# Override the built in positional embeddings | |
del gpt.wpe | |
gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim) | |
# Built-in token embeddings are unused. | |
del gpt.wte | |
mel_pos_emb = ( | |
LearnedPositionEmbeddings(max_mel_seq_len, model_dim) | |
if max_mel_seq_len != -1 | |
else functools.partial(null_position_embeddings, dim=model_dim) | |
) | |
text_pos_emb = ( | |
LearnedPositionEmbeddings(max_text_seq_len, model_dim) | |
if max_mel_seq_len != -1 | |
else functools.partial(null_position_embeddings, dim=model_dim) | |
) | |
# gpt = torch.compile(gpt, mode="reduce-overhead", fullgraph=True) | |
return gpt, mel_pos_emb, text_pos_emb, None, None | |
class GPT(nn.Module): | |
def __init__( | |
self, | |
start_text_token=261, | |
stop_text_token=0, | |
layers=8, | |
model_dim=512, | |
heads=8, | |
max_text_tokens=120, | |
max_mel_tokens=250, | |
max_prompt_tokens=70, | |
max_conditioning_inputs=1, | |
code_stride_len=1024, | |
number_text_tokens=256, | |
num_audio_tokens=8194, | |
start_audio_token=8192, | |
stop_audio_token=8193, | |
train_solo_embeddings=False, | |
checkpointing=False, | |
average_conditioning_embeddings=False, | |
label_smoothing=0.0, | |
use_perceiver_resampler=False, | |
perceiver_cond_length_compression=256, | |
): | |
""" | |
Args: | |
""" | |
super().__init__() | |
self.label_smoothing = label_smoothing | |
self.number_text_tokens = number_text_tokens | |
self.start_text_token = start_text_token | |
self.stop_text_token = stop_text_token | |
self.num_audio_tokens = num_audio_tokens | |
self.start_audio_token = start_audio_token | |
self.stop_audio_token = stop_audio_token | |
self.start_prompt_token = start_audio_token | |
self.stop_prompt_token = stop_audio_token | |
self.layers = layers | |
self.heads = heads | |
self.model_dim = model_dim | |
self.max_conditioning_inputs = max_conditioning_inputs | |
self.max_gen_mel_tokens = max_mel_tokens - self.max_conditioning_inputs - 2 | |
self.max_mel_tokens = -1 if max_mel_tokens == -1 else max_mel_tokens + 2 + self.max_conditioning_inputs | |
self.max_text_tokens = -1 if max_text_tokens == -1 else max_text_tokens + 2 | |
self.max_prompt_tokens = max_prompt_tokens | |
self.code_stride_len = code_stride_len | |
self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=heads) | |
self.conditioning_dropout = nn.Dropout1d(0.1) | |
self.average_conditioning_embeddings = average_conditioning_embeddings | |
self.use_perceiver_resampler = use_perceiver_resampler | |
self.perceiver_cond_length_compression = perceiver_cond_length_compression | |
self.text_embedding = nn.Embedding(self.number_text_tokens, model_dim) | |
self.mel_embedding = nn.Embedding(self.num_audio_tokens, model_dim) | |
( | |
self.gpt, | |
self.mel_pos_embedding, | |
self.text_pos_embedding, | |
self.mel_layer_pos_embedding, | |
self.text_layer_pos_embedding, | |
) = build_hf_gpt_transformer( | |
layers, | |
model_dim, | |
heads, | |
self.max_mel_tokens, | |
self.max_text_tokens, | |
self.max_prompt_tokens, | |
checkpointing, | |
) | |
if train_solo_embeddings: | |
self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True) | |
self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * 0.02, requires_grad=True) | |
else: | |
self.mel_solo_embedding = 0 | |
self.text_solo_embedding = 0 | |
self.final_norm = nn.LayerNorm(model_dim) | |
self.text_head = nn.Linear(model_dim, self.number_text_tokens) | |
self.mel_head = nn.Linear(model_dim, self.num_audio_tokens) | |
if self.use_perceiver_resampler: | |
# XTTS v2 | |
self.conditioning_perceiver = PerceiverResampler( | |
dim=model_dim, | |
depth=2, | |
dim_context=model_dim, | |
num_latents=32, | |
dim_head=64, | |
heads=8, | |
ff_mult=4, | |
use_flash_attn=False, | |
) | |
else: | |
# XTTS v1 | |
self.prompt_embedding = nn.Embedding(self.num_audio_tokens, model_dim) | |
self.prompt_pos_embedding = LearnedPositionEmbeddings(24 * 9, model_dim) | |
def get_grad_norm_parameter_groups(self): | |
return { | |
"conditioning_encoder": list(self.conditioning_encoder.parameters()), | |
"conditioning_perceiver": list(self.conditioning_perceiver.parameters()) | |
if self.use_perceiver_resampler | |
else None, | |
"gpt": list(self.gpt.parameters()), | |
"heads": list(self.text_head.parameters()) + list(self.mel_head.parameters()), | |
} | |
def init_gpt_for_inference(self, kv_cache=True, use_deepspeed=False): | |
seq_length = self.max_prompt_tokens + self.max_mel_tokens + self.max_text_tokens + 1 | |
gpt_config = GPT2Config( | |
vocab_size=self.max_mel_tokens, | |
n_positions=seq_length, | |
n_ctx=seq_length, | |
n_embd=self.model_dim, | |
n_layer=self.layers, | |
n_head=self.heads, | |
gradient_checkpointing=False, | |
use_cache=True, | |
) | |
self.gpt_inference = GPT2InferenceModel( | |
gpt_config, | |
self.gpt, | |
self.mel_pos_embedding, | |
self.mel_embedding, | |
self.final_norm, | |
self.mel_head, | |
kv_cache=kv_cache, | |
) | |
self.gpt.wte = self.mel_embedding | |
if use_deepspeed: | |
import deepspeed | |
self.ds_engine = deepspeed.init_inference( | |
model=self.gpt_inference.half(), # Transformers models | |
mp_size=1, # Number of GPU | |
dtype=torch.float32, # desired data type of output | |
replace_method="auto", # Lets DS autmatically identify the layer to replace | |
replace_with_kernel_inject=True, # replace the model with the kernel injector | |
) | |
self.gpt_inference = self.ds_engine.module.eval() | |
def set_inputs_and_targets(self, input, start_token, stop_token): | |
inp = F.pad(input, (1, 0), value=start_token) | |
tar = F.pad(input, (0, 1), value=stop_token) | |
return inp, tar | |
def set_mel_padding(self, mel_input_tokens, code_lengths): | |
""" | |
Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in | |
that audio clip, reformats the tokens with stop_audio_token in place of the zero padding. This is required | |
preformatting to create a working TTS model. | |
""" | |
# Set padding areas within MEL (currently it is coded with the MEL code for <zero>). | |
for b in range(len(code_lengths)): | |
actual_end = code_lengths[b] | |
if actual_end < mel_input_tokens.shape[-1]: | |
mel_input_tokens[b, actual_end:] = self.stop_audio_token | |
return mel_input_tokens | |
def get_logits( | |
self, | |
first_inputs, | |
first_head, | |
second_inputs=None, | |
second_head=None, | |
prompt=None, | |
get_attns=False, | |
return_latent=False, | |
attn_mask_cond=None, | |
attn_mask_text=None, | |
attn_mask_mel=None, | |
): | |
if prompt is not None: | |
offset = prompt.shape[1] | |
if second_inputs is not None: | |
emb = torch.cat([prompt, first_inputs, second_inputs], dim=1) | |
else: | |
emb = torch.cat([prompt, first_inputs], dim=1) | |
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): | |
attn_mask = None | |
if attn_mask_text is not None: | |
attn_mask = torch.cat([attn_mask_text, attn_mask_mel], dim=1) | |
if prompt is not None: | |
attn_mask_cond = torch.ones(prompt.shape[0], offset, dtype=torch.bool, device=emb.device) | |
attn_mask = torch.cat([attn_mask_cond, attn_mask], dim=1) | |
gpt_out = self.gpt( | |
inputs_embeds=emb, | |
return_dict=True, | |
output_attentions=get_attns, | |
attention_mask=attn_mask, | |
) | |
if get_attns: | |
return gpt_out.attentions | |
enc = gpt_out.last_hidden_state[:, offset:] | |
enc = self.final_norm(enc) | |
if return_latent: | |
return enc[:, : first_inputs.shape[1]], enc[:, -second_inputs.shape[1] :] | |
first_logits = enc[:, : first_inputs.shape[1]] | |
first_logits = first_head(first_logits) | |
first_logits = first_logits.permute(0, 2, 1) | |
if second_inputs is not None: | |
second_logits = enc[:, -second_inputs.shape[1] :] | |
second_logits = second_head(second_logits) | |
second_logits = second_logits.permute(0, 2, 1) | |
return first_logits, second_logits | |
else: | |
return first_logits | |
def get_conditioning(self, speech_conditioning_input): | |
speech_conditioning_input = ( | |
speech_conditioning_input.unsqueeze(1) | |
if len(speech_conditioning_input.shape) == 3 | |
else speech_conditioning_input | |
) | |
conds = [] | |
for j in range(speech_conditioning_input.shape[1]): | |
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) | |
conds = torch.stack(conds, dim=1) | |
conds = conds.mean(dim=1) | |
return conds | |
def get_prompts(self, prompt_codes): | |
""" | |
Create a prompt from the mel codes. This is used to condition the model on the mel codes. | |
Pad the prompt with start and stop mel tokens. | |
""" | |
prompt = prompt_codes | |
if self.training: | |
lengths = [] | |
# Compute the real prompt length based on the first encounter with the token 83 used for padding | |
for i in range(prompt_codes.shape[0]): | |
length = 0 | |
for j in range(prompt_codes.shape[1]): | |
if prompt_codes[i, j] == 83: | |
break | |
else: | |
length += 1 | |
lengths.append(length) | |
# prompt_len = random.randint(1, 9) # in secs | |
prompt_len = 3 | |
prompt_len = prompt_len * 24 # in frames | |
if prompt_codes.shape[-1] >= prompt_len: | |
for i in range(prompt_codes.shape[0]): | |
if lengths[i] < prompt_len: | |
start = 0 | |
else: | |
start = random.randint(0, lengths[i] - prompt_len) | |
prompt = prompt_codes[:, start : start + prompt_len] | |
# add start and stop tokens | |
prompt = F.pad(prompt, (1, 0), value=self.start_prompt_token) | |
prompt = F.pad(prompt, (0, 1), value=self.stop_prompt_token) | |
return prompt | |
def get_style_emb(self, cond_input, return_latent=False): | |
""" | |
cond_input: (b, 80, s) or (b, 1, 80, s) | |
conds: (b, 1024, s) | |
""" | |
conds = None | |
if not return_latent: | |
if cond_input.ndim == 4: | |
cond_input = cond_input.squeeze(1) | |
conds = self.conditioning_encoder(cond_input) # (b, d, s) | |
if self.use_perceiver_resampler: | |
conds = self.conditioning_perceiver(conds.permute(0, 2, 1)).transpose(1, 2) # (b, d, 32) | |
else: | |
# already computed | |
conds = cond_input.unsqueeze(1) | |
return conds | |
def forward( | |
self, | |
text_inputs, | |
text_lengths, | |
audio_codes, | |
wav_lengths, | |
cond_mels=None, | |
cond_idxs=None, | |
cond_lens=None, | |
cond_latents=None, | |
return_attentions=False, | |
return_latent=False, | |
): | |
""" | |
Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode | |
(actuated by `text_first`). | |
text_inputs: long tensor, (b,t) | |
text_lengths: long tensor, (b,) | |
mel_inputs: long tensor, (b,m) | |
wav_lengths: long tensor, (b,) | |
cond_mels: MEL float tensor, (b, 1, 80,s) | |
cond_idxs: cond start and end indexs, (b, 2) | |
If return_attentions is specified, only logits are returned. | |
If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned. | |
""" | |
# ❗ FIXIT | |
if self.max_conditioning_inputs == 0: | |
assert cond_mels is None, " ❗ cond_mels is not None, but max_conditioning_inputs == 0" | |
max_text_len = text_lengths.max() | |
code_lengths = torch.ceil(wav_lengths / self.code_stride_len).long() + 3 | |
if cond_lens is not None: | |
if self.use_perceiver_resampler: | |
cond_lens = cond_lens // self.perceiver_cond_length_compression | |
else: | |
cond_lens = cond_lens // self.code_stride_len | |
if cond_idxs is not None: | |
# recompute cond idxs for mel lengths | |
for idx in range(cond_idxs.size(0)): | |
if self.use_perceiver_resampler: | |
cond_idxs[idx] = cond_idxs[idx] // self.perceiver_cond_length_compression | |
else: | |
cond_idxs[idx] = cond_idxs[idx] // self.code_stride_len | |
# ensure that the cond_mel does not have padding | |
# if cond_lens is not None and cond_idxs is None: | |
# min_cond_len = torch.min(cond_lens) | |
# cond_mels = cond_mels[:, :, :, :min_cond_len] | |
# If len(codes) + 3 is larger than maxiumum allowed length, we truncate the codes. | |
max_mel_len = code_lengths.max() | |
if max_mel_len > audio_codes.shape[-1]: | |
audio_codes = F.pad(audio_codes, (0, max_mel_len - audio_codes.shape[-1])) | |
# 💖 Lovely assertions | |
assert ( | |
max_mel_len <= audio_codes.shape[-1] | |
), f" ❗ max_mel_len ({max_mel_len}) > audio_codes.shape[-1] ({audio_codes.shape[-1]})" | |
assert ( | |
max_text_len <= text_inputs.shape[-1] | |
), f" ❗ max_text_len ({max_text_len}) > text_inputs.shape[-1] ({text_inputs.shape[-1]})" | |
# Append stop token to text inputs | |
text_inputs = F.pad(text_inputs[:, :max_text_len], (0, 1), value=self.stop_text_token) | |
# Append silence token to mel codes | |
audio_codes = F.pad(audio_codes[:, :max_mel_len], (0, 1), value=self.stop_audio_token) | |
# Pad mel codes with stop_audio_token | |
audio_codes = self.set_mel_padding( | |
audio_codes, code_lengths - 3 | |
) # -3 to get the real code lengths without consider start and stop tokens that was not added yet | |
# Build input and target tensors | |
# Prepend start token to inputs and append stop token to targets | |
text_inputs, text_targets = self.set_inputs_and_targets( | |
text_inputs, self.start_text_token, self.stop_text_token | |
) | |
audio_codes, mel_targets = self.set_inputs_and_targets( | |
audio_codes, self.start_audio_token, self.stop_audio_token | |
) | |
# Set attn_mask | |
attn_mask_cond = None | |
attn_mask_text = None | |
attn_mask_mel = None | |
if not return_latent: | |
attn_mask_cond = torch.ones( | |
cond_mels.shape[0], | |
cond_mels.shape[-1], | |
dtype=torch.bool, | |
device=text_inputs.device, | |
) | |
attn_mask_text = torch.ones( | |
text_inputs.shape[0], | |
text_inputs.shape[1], | |
dtype=torch.bool, | |
device=text_inputs.device, | |
) | |
attn_mask_mel = torch.ones( | |
audio_codes.shape[0], | |
audio_codes.shape[1], | |
dtype=torch.bool, | |
device=audio_codes.device, | |
) | |
if cond_idxs is not None: | |
# use masking approach | |
for idx, r in enumerate(cond_idxs): | |
l = r[1] - r[0] | |
attn_mask_cond[idx, l:] = 0.0 | |
elif cond_lens is not None: | |
for idx, l in enumerate(cond_lens): | |
attn_mask_cond[idx, l:] = 0.0 | |
for idx, l in enumerate(text_lengths): | |
attn_mask_text[idx, l + 1 :] = 0.0 | |
for idx, l in enumerate(code_lengths): | |
attn_mask_mel[idx, l + 1 :] = 0.0 | |
# Compute text embeddings + positional embeddings | |
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) | |
# Compute mel embeddings + positional embeddings | |
mel_emb = self.mel_embedding(audio_codes) + self.mel_pos_embedding(audio_codes) | |
# Compute speech conditioning input | |
if cond_latents is None: | |
cond_latents = self.get_style_emb(cond_mels).transpose(1, 2) | |
# Get logits | |
sub = -5 # don't ask me why 😄 | |
if self.training: | |
sub = -1 | |
text_logits, mel_logits = self.get_logits( | |
text_emb, | |
self.text_head, | |
mel_emb, | |
self.mel_head, | |
prompt=cond_latents, | |
get_attns=return_attentions, | |
return_latent=return_latent, | |
attn_mask_cond=attn_mask_cond, | |
attn_mask_text=attn_mask_text, | |
attn_mask_mel=attn_mask_mel, | |
) | |
if return_latent: | |
return mel_logits[:, :sub] # sub to prevent bla. | |
if return_attentions: | |
return mel_logits | |
# Set paddings to -1 to ignore them in loss | |
for idx, l in enumerate(text_lengths): | |
text_targets[idx, l + 1 :] = -1 | |
for idx, l in enumerate(code_lengths): | |
mel_targets[idx, l + 1 :] = -1 | |
# check if stoptoken is in every row of mel_targets | |
assert (mel_targets == self.stop_audio_token).sum() >= mel_targets.shape[ | |
0 | |
], f" ❗ mel_targets does not contain stop token ({self.stop_audio_token}) in every row." | |
# ignore the loss for the segment used for conditioning | |
# coin flip for the segment to be ignored | |
if cond_idxs is not None: | |
cond_start = cond_idxs[idx, 0] | |
cond_end = cond_idxs[idx, 1] | |
mel_targets[idx, cond_start:cond_end] = -1 | |
# Compute losses | |
loss_text = F.cross_entropy( | |
text_logits, text_targets.long(), ignore_index=-1, label_smoothing=self.label_smoothing | |
) | |
loss_mel = F.cross_entropy( | |
mel_logits, mel_targets.long(), ignore_index=-1, label_smoothing=self.label_smoothing | |
) | |
return loss_text.mean(), loss_mel.mean(), mel_logits | |
def inference(self, cond_latents, text_inputs, **hf_generate_kwargs): | |
self.compute_embeddings(cond_latents, text_inputs) | |
return self.generate(cond_latents, text_inputs, **hf_generate_kwargs) | |
def compute_embeddings( | |
self, | |
cond_latents, | |
text_inputs, | |
): | |
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) | |
text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token) | |
emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) | |
emb = torch.cat([cond_latents, emb], dim=1) | |
self.gpt_inference.store_prefix_emb(emb) | |
gpt_inputs = torch.full( | |
( | |
emb.shape[0], | |
emb.shape[1] + 1, # +1 for the start_audio_token | |
), | |
fill_value=1, | |
dtype=torch.long, | |
device=text_inputs.device, | |
) | |
gpt_inputs[:, -1] = self.start_audio_token | |
return gpt_inputs | |
def generate( | |
self, | |
cond_latents, | |
text_inputs, | |
**hf_generate_kwargs, | |
): | |
gpt_inputs = self.compute_embeddings(cond_latents, text_inputs) | |
gen = self.gpt_inference.generate( | |
gpt_inputs, | |
bos_token_id=self.start_audio_token, | |
pad_token_id=self.stop_audio_token, | |
eos_token_id=self.stop_audio_token, | |
max_length=self.max_gen_mel_tokens + gpt_inputs.shape[-1], | |
**hf_generate_kwargs, | |
) | |
if "return_dict_in_generate" in hf_generate_kwargs: | |
return gen.sequences[:, gpt_inputs.shape[1] :], gen | |
return gen[:, gpt_inputs.shape[1] :] | |
def get_generator(self, fake_inputs, **hf_generate_kwargs): | |
return self.gpt_inference.generate_stream( | |
fake_inputs, | |
bos_token_id=self.start_audio_token, | |
pad_token_id=self.stop_audio_token, | |
eos_token_id=self.stop_audio_token, | |
max_length=self.max_gen_mel_tokens + fake_inputs.shape[-1], | |
do_stream=True, | |
**hf_generate_kwargs, | |
) | |