Spaces:
Running
Running
import os | |
import random | |
import sys | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.data | |
from TTS.tts.models.xtts import load_audio | |
torch.set_num_threads(1) | |
def key_samples_by_col(samples, col): | |
"""Returns a dictionary of samples keyed by language.""" | |
samples_by_col = {} | |
for sample in samples: | |
col_val = sample[col] | |
assert isinstance(col_val, str) | |
if col_val not in samples_by_col: | |
samples_by_col[col_val] = [] | |
samples_by_col[col_val].append(sample) | |
return samples_by_col | |
def get_prompt_slice(gt_path, max_sample_length, min_sample_length, sample_rate, is_eval=False): | |
rel_clip = load_audio(gt_path, sample_rate) | |
# if eval uses a middle size sample when it is possible to be more reproducible | |
if is_eval: | |
sample_length = int((min_sample_length + max_sample_length) / 2) | |
else: | |
sample_length = random.randint(min_sample_length, max_sample_length) | |
gap = rel_clip.shape[-1] - sample_length | |
if gap < 0: | |
sample_length = rel_clip.shape[-1] // 2 | |
gap = rel_clip.shape[-1] - sample_length | |
# if eval start always from the position 0 to be more reproducible | |
if is_eval: | |
rand_start = 0 | |
else: | |
rand_start = random.randint(0, gap) | |
rand_end = rand_start + sample_length | |
rel_clip = rel_clip[:, rand_start:rand_end] | |
rel_clip = F.pad(rel_clip, pad=(0, max_sample_length - rel_clip.shape[-1])) | |
cond_idxs = [rand_start, rand_end] | |
return rel_clip, rel_clip.shape[-1], cond_idxs | |
class XTTSDataset(torch.utils.data.Dataset): | |
def __init__(self, config, samples, tokenizer, sample_rate, is_eval=False): | |
self.config = config | |
model_args = config.model_args | |
self.failed_samples = set() | |
self.debug_failures = model_args.debug_loading_failures | |
self.max_conditioning_length = model_args.max_conditioning_length | |
self.min_conditioning_length = model_args.min_conditioning_length | |
self.is_eval = is_eval | |
self.tokenizer = tokenizer | |
self.sample_rate = sample_rate | |
self.max_wav_len = model_args.max_wav_length | |
self.max_text_len = model_args.max_text_length | |
self.use_masking_gt_prompt_approach = model_args.gpt_use_masking_gt_prompt_approach | |
assert self.max_wav_len is not None and self.max_text_len is not None | |
self.samples = samples | |
if not is_eval: | |
random.seed(config.training_seed) | |
# random.shuffle(self.samples) | |
random.shuffle(self.samples) | |
# order by language | |
self.samples = key_samples_by_col(self.samples, "language") | |
print(" > Sampling by language:", self.samples.keys()) | |
else: | |
# for evaluation load and check samples that are corrupted to ensures the reproducibility | |
self.check_eval_samples() | |
def check_eval_samples(self): | |
print(" > Filtering invalid eval samples!!") | |
new_samples = [] | |
for sample in self.samples: | |
try: | |
tseq, _, wav, _, _, _ = self.load_item(sample) | |
except: | |
continue | |
# Basically, this audio file is nonexistent or too long to be supported by the dataset. | |
if ( | |
wav is None | |
or (self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) | |
or (self.max_text_len is not None and tseq.shape[0] > self.max_text_len) | |
): | |
continue | |
new_samples.append(sample) | |
self.samples = new_samples | |
print(" > Total eval samples after filtering:", len(self.samples)) | |
def get_text(self, text, lang): | |
tokens = self.tokenizer.encode(text, lang) | |
tokens = torch.IntTensor(tokens) | |
assert not torch.any(tokens == 1), f"UNK token found in {text} -> {self.tokenizer.decode(tokens)}" | |
# The stop token should always be sacred. | |
assert not torch.any(tokens == 0), f"Stop token found in {text}" | |
return tokens | |
def load_item(self, sample): | |
text = str(sample["text"]) | |
tseq = self.get_text(text, sample["language"]) | |
audiopath = sample["audio_file"] | |
wav = load_audio(audiopath, self.sample_rate) | |
if text is None or len(text.strip()) == 0: | |
raise ValueError | |
if wav is None or wav.shape[-1] < (0.5 * self.sample_rate): | |
# Ultra short clips are also useless (and can cause problems within some models). | |
raise ValueError | |
if self.use_masking_gt_prompt_approach: | |
# get a slice from GT to condition the model | |
cond, _, cond_idxs = get_prompt_slice( | |
audiopath, self.max_conditioning_length, self.min_conditioning_length, self.sample_rate, self.is_eval | |
) | |
# if use masking do not use cond_len | |
cond_len = torch.nan | |
else: | |
ref_sample = ( | |
sample["reference_path"] | |
if "reference_path" in sample and sample["reference_path"] is not None | |
else audiopath | |
) | |
cond, cond_len, _ = get_prompt_slice( | |
ref_sample, self.max_conditioning_length, self.min_conditioning_length, self.sample_rate, self.is_eval | |
) | |
# if do not use masking use cond_len | |
cond_idxs = torch.nan | |
return tseq, audiopath, wav, cond, cond_len, cond_idxs | |
def __getitem__(self, index): | |
if self.is_eval: | |
sample = self.samples[index] | |
sample_id = str(index) | |
else: | |
# select a random language | |
lang = random.choice(list(self.samples.keys())) | |
# select random sample | |
index = random.randint(0, len(self.samples[lang]) - 1) | |
sample = self.samples[lang][index] | |
# a unique id for each sampel to deal with fails | |
sample_id = lang + "_" + str(index) | |
# ignore samples that we already know that is not valid ones | |
if sample_id in self.failed_samples: | |
if self.debug_failures: | |
print(f"Ignoring sample {sample['audio_file']} because it was already ignored before !!") | |
# call get item again to get other sample | |
return self[1] | |
# try to load the sample, if fails added it to the failed samples list | |
try: | |
tseq, audiopath, wav, cond, cond_len, cond_idxs = self.load_item(sample) | |
except: | |
if self.debug_failures: | |
print(f"error loading {sample['audio_file']} {sys.exc_info()}") | |
self.failed_samples.add(sample_id) | |
return self[1] | |
# check if the audio and text size limits and if it out of the limits, added it failed_samples | |
if ( | |
wav is None | |
or (self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) | |
or (self.max_text_len is not None and tseq.shape[0] > self.max_text_len) | |
): | |
# Basically, this audio file is nonexistent or too long to be supported by the dataset. | |
# It's hard to handle this situation properly. Best bet is to return the a random valid token and skew the dataset somewhat as a result. | |
if self.debug_failures and wav is not None and tseq is not None: | |
print( | |
f"error loading {sample['audio_file']}: ranges are out of bounds; {wav.shape[-1]}, {tseq.shape[0]}" | |
) | |
self.failed_samples.add(sample_id) | |
return self[1] | |
res = { | |
# 'real_text': text, | |
"text": tseq, | |
"text_lengths": torch.tensor(tseq.shape[0], dtype=torch.long), | |
"wav": wav, | |
"wav_lengths": torch.tensor(wav.shape[-1], dtype=torch.long), | |
"filenames": audiopath, | |
"conditioning": cond.unsqueeze(1), | |
"cond_lens": torch.tensor(cond_len, dtype=torch.long) | |
if cond_len is not torch.nan | |
else torch.tensor([cond_len]), | |
"cond_idxs": torch.tensor(cond_idxs) if cond_idxs is not torch.nan else torch.tensor([cond_idxs]), | |
} | |
return res | |
def __len__(self): | |
if self.is_eval: | |
return len(self.samples) | |
return sum([len(v) for v in self.samples.values()]) | |
def collate_fn(self, batch): | |
# convert list of dicts to dict of lists | |
B = len(batch) | |
batch = {k: [dic[k] for dic in batch] for k in batch[0]} | |
# stack for features that already have the same shape | |
batch["wav_lengths"] = torch.stack(batch["wav_lengths"]) | |
batch["text_lengths"] = torch.stack(batch["text_lengths"]) | |
batch["conditioning"] = torch.stack(batch["conditioning"]) | |
batch["cond_lens"] = torch.stack(batch["cond_lens"]) | |
batch["cond_idxs"] = torch.stack(batch["cond_idxs"]) | |
if torch.any(batch["cond_idxs"].isnan()): | |
batch["cond_idxs"] = None | |
if torch.any(batch["cond_lens"].isnan()): | |
batch["cond_lens"] = None | |
max_text_len = batch["text_lengths"].max() | |
max_wav_len = batch["wav_lengths"].max() | |
# create padding tensors | |
text_padded = torch.IntTensor(B, max_text_len) | |
wav_padded = torch.FloatTensor(B, 1, max_wav_len) | |
# initialize tensors for zero padding | |
text_padded = text_padded.zero_() | |
wav_padded = wav_padded.zero_() | |
for i in range(B): | |
text = batch["text"][i] | |
text_padded[i, : batch["text_lengths"][i]] = torch.IntTensor(text) | |
wav = batch["wav"][i] | |
wav_padded[i, :, : batch["wav_lengths"][i]] = torch.FloatTensor(wav) | |
batch["wav"] = wav_padded | |
batch["padded_text"] = text_padded | |
return batch | |