Shadhil's picture
voice-clone with single audio sample input
9b2107c
raw
history blame
18.8 kB
# coding: utf-8
# adapted from https://github.com/r9y9/tacotron_pytorch
import torch
from torch import nn
from .attentions import init_attn
from .common_layers import Prenet
class BatchNormConv1d(nn.Module):
r"""A wrapper for Conv1d with BatchNorm. It sets the activation
function between Conv and BatchNorm layers. BatchNorm layer
is initialized with the TF default values for momentum and eps.
Args:
in_channels: size of each input sample
out_channels: size of each output samples
kernel_size: kernel size of conv filters
stride: stride of conv filters
padding: padding of conv filters
activation: activation function set b/w Conv1d and BatchNorm
Shapes:
- input: (B, D)
- output: (B, D)
"""
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, activation=None):
super().__init__()
self.padding = padding
self.padder = nn.ConstantPad1d(padding, 0)
self.conv1d = nn.Conv1d(
in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=0, bias=False
)
# Following tensorflow's default parameters
self.bn = nn.BatchNorm1d(out_channels, momentum=0.99, eps=1e-3)
self.activation = activation
# self.init_layers()
def init_layers(self):
if isinstance(self.activation, torch.nn.ReLU):
w_gain = "relu"
elif isinstance(self.activation, torch.nn.Tanh):
w_gain = "tanh"
elif self.activation is None:
w_gain = "linear"
else:
raise RuntimeError("Unknown activation function")
torch.nn.init.xavier_uniform_(self.conv1d.weight, gain=torch.nn.init.calculate_gain(w_gain))
def forward(self, x):
x = self.padder(x)
x = self.conv1d(x)
x = self.bn(x)
if self.activation is not None:
x = self.activation(x)
return x
class Highway(nn.Module):
r"""Highway layers as explained in https://arxiv.org/abs/1505.00387
Args:
in_features (int): size of each input sample
out_feature (int): size of each output sample
Shapes:
- input: (B, *, H_in)
- output: (B, *, H_out)
"""
# TODO: Try GLU layer
def __init__(self, in_features, out_feature):
super().__init__()
self.H = nn.Linear(in_features, out_feature)
self.H.bias.data.zero_()
self.T = nn.Linear(in_features, out_feature)
self.T.bias.data.fill_(-1)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
# self.init_layers()
def init_layers(self):
torch.nn.init.xavier_uniform_(self.H.weight, gain=torch.nn.init.calculate_gain("relu"))
torch.nn.init.xavier_uniform_(self.T.weight, gain=torch.nn.init.calculate_gain("sigmoid"))
def forward(self, inputs):
H = self.relu(self.H(inputs))
T = self.sigmoid(self.T(inputs))
return H * T + inputs * (1.0 - T)
class CBHG(nn.Module):
"""CBHG module: a recurrent neural network composed of:
- 1-d convolution banks
- Highway networks + residual connections
- Bidirectional gated recurrent units
Args:
in_features (int): sample size
K (int): max filter size in conv bank
projections (list): conv channel sizes for conv projections
num_highways (int): number of highways layers
Shapes:
- input: (B, C, T_in)
- output: (B, T_in, C*2)
"""
# pylint: disable=dangerous-default-value
def __init__(
self,
in_features,
K=16,
conv_bank_features=128,
conv_projections=[128, 128],
highway_features=128,
gru_features=128,
num_highways=4,
):
super().__init__()
self.in_features = in_features
self.conv_bank_features = conv_bank_features
self.highway_features = highway_features
self.gru_features = gru_features
self.conv_projections = conv_projections
self.relu = nn.ReLU()
# list of conv1d bank with filter size k=1...K
# TODO: try dilational layers instead
self.conv1d_banks = nn.ModuleList(
[
BatchNormConv1d(
in_features,
conv_bank_features,
kernel_size=k,
stride=1,
padding=[(k - 1) // 2, k // 2],
activation=self.relu,
)
for k in range(1, K + 1)
]
)
# max pooling of conv bank, with padding
# TODO: try average pooling OR larger kernel size
out_features = [K * conv_bank_features] + conv_projections[:-1]
activations = [self.relu] * (len(conv_projections) - 1)
activations += [None]
# setup conv1d projection layers
layer_set = []
for in_size, out_size, ac in zip(out_features, conv_projections, activations):
layer = BatchNormConv1d(in_size, out_size, kernel_size=3, stride=1, padding=[1, 1], activation=ac)
layer_set.append(layer)
self.conv1d_projections = nn.ModuleList(layer_set)
# setup Highway layers
if self.highway_features != conv_projections[-1]:
self.pre_highway = nn.Linear(conv_projections[-1], highway_features, bias=False)
self.highways = nn.ModuleList([Highway(highway_features, highway_features) for _ in range(num_highways)])
# bi-directional GPU layer
self.gru = nn.GRU(gru_features, gru_features, 1, batch_first=True, bidirectional=True)
def forward(self, inputs):
# (B, in_features, T_in)
x = inputs
# (B, hid_features*K, T_in)
# Concat conv1d bank outputs
outs = []
for conv1d in self.conv1d_banks:
out = conv1d(x)
outs.append(out)
x = torch.cat(outs, dim=1)
assert x.size(1) == self.conv_bank_features * len(self.conv1d_banks)
for conv1d in self.conv1d_projections:
x = conv1d(x)
x += inputs
x = x.transpose(1, 2)
if self.highway_features != self.conv_projections[-1]:
x = self.pre_highway(x)
# Residual connection
# TODO: try residual scaling as in Deep Voice 3
# TODO: try plain residual layers
for highway in self.highways:
x = highway(x)
# (B, T_in, hid_features*2)
# TODO: replace GRU with convolution as in Deep Voice 3
self.gru.flatten_parameters()
outputs, _ = self.gru(x)
return outputs
class EncoderCBHG(nn.Module):
r"""CBHG module with Encoder specific arguments"""
def __init__(self):
super().__init__()
self.cbhg = CBHG(
128,
K=16,
conv_bank_features=128,
conv_projections=[128, 128],
highway_features=128,
gru_features=128,
num_highways=4,
)
def forward(self, x):
return self.cbhg(x)
class Encoder(nn.Module):
r"""Stack Prenet and CBHG module for encoder
Args:
inputs (FloatTensor): embedding features
Shapes:
- inputs: (B, T, D_in)
- outputs: (B, T, 128 * 2)
"""
def __init__(self, in_features):
super().__init__()
self.prenet = Prenet(in_features, out_features=[256, 128])
self.cbhg = EncoderCBHG()
def forward(self, inputs):
# B x T x prenet_dim
outputs = self.prenet(inputs)
outputs = self.cbhg(outputs.transpose(1, 2))
return outputs
class PostCBHG(nn.Module):
def __init__(self, mel_dim):
super().__init__()
self.cbhg = CBHG(
mel_dim,
K=8,
conv_bank_features=128,
conv_projections=[256, mel_dim],
highway_features=128,
gru_features=128,
num_highways=4,
)
def forward(self, x):
return self.cbhg(x)
class Decoder(nn.Module):
"""Tacotron decoder.
Args:
in_channels (int): number of input channels.
frame_channels (int): number of feature frame channels.
r (int): number of outputs per time step (reduction rate).
memory_size (int): size of the past window. if <= 0 memory_size = r
attn_type (string): type of attention used in decoder.
attn_windowing (bool): if true, define an attention window centered to maximum
attention response. It provides more robust attention alignment especially
at interence time.
attn_norm (string): attention normalization function. 'sigmoid' or 'softmax'.
prenet_type (string): 'original' or 'bn'.
prenet_dropout (float): prenet dropout rate.
forward_attn (bool): if true, use forward attention method. https://arxiv.org/abs/1807.06736
trans_agent (bool): if true, use transition agent. https://arxiv.org/abs/1807.06736
forward_attn_mask (bool): if true, mask attention values smaller than a threshold.
location_attn (bool): if true, use location sensitive attention.
attn_K (int): number of attention heads for GravesAttention.
separate_stopnet (bool): if true, detach stopnet input to prevent gradient flow.
d_vector_dim (int): size of speaker embedding vector, for multi-speaker training.
max_decoder_steps (int): Maximum number of steps allowed for the decoder. Defaults to 500.
"""
# Pylint gets confused by PyTorch conventions here
# pylint: disable=attribute-defined-outside-init
def __init__(
self,
in_channels,
frame_channels,
r,
memory_size,
attn_type,
attn_windowing,
attn_norm,
prenet_type,
prenet_dropout,
forward_attn,
trans_agent,
forward_attn_mask,
location_attn,
attn_K,
separate_stopnet,
max_decoder_steps,
):
super().__init__()
self.r_init = r
self.r = r
self.in_channels = in_channels
self.max_decoder_steps = max_decoder_steps
self.use_memory_queue = memory_size > 0
self.memory_size = memory_size if memory_size > 0 else r
self.frame_channels = frame_channels
self.separate_stopnet = separate_stopnet
self.query_dim = 256
# memory -> |Prenet| -> processed_memory
prenet_dim = frame_channels * self.memory_size if self.use_memory_queue else frame_channels
self.prenet = Prenet(prenet_dim, prenet_type, prenet_dropout, out_features=[256, 128])
# processed_inputs, processed_memory -> |Attention| -> Attention, attention, RNN_State
# attention_rnn generates queries for the attention mechanism
self.attention_rnn = nn.GRUCell(in_channels + 128, self.query_dim)
self.attention = init_attn(
attn_type=attn_type,
query_dim=self.query_dim,
embedding_dim=in_channels,
attention_dim=128,
location_attention=location_attn,
attention_location_n_filters=32,
attention_location_kernel_size=31,
windowing=attn_windowing,
norm=attn_norm,
forward_attn=forward_attn,
trans_agent=trans_agent,
forward_attn_mask=forward_attn_mask,
attn_K=attn_K,
)
# (processed_memory | attention context) -> |Linear| -> decoder_RNN_input
self.project_to_decoder_in = nn.Linear(256 + in_channels, 256)
# decoder_RNN_input -> |RNN| -> RNN_state
self.decoder_rnns = nn.ModuleList([nn.GRUCell(256, 256) for _ in range(2)])
# RNN_state -> |Linear| -> mel_spec
self.proj_to_mel = nn.Linear(256, frame_channels * self.r_init)
# learn init values instead of zero init.
self.stopnet = StopNet(256 + frame_channels * self.r_init)
def set_r(self, new_r):
self.r = new_r
def _reshape_memory(self, memory):
"""
Reshape the spectrograms for given 'r'
"""
# Grouping multiple frames if necessary
if memory.size(-1) == self.frame_channels:
memory = memory.view(memory.shape[0], memory.size(1) // self.r, -1)
# Time first (T_decoder, B, frame_channels)
memory = memory.transpose(0, 1)
return memory
def _init_states(self, inputs):
"""
Initialization of decoder states
"""
B = inputs.size(0)
# go frame as zeros matrix
if self.use_memory_queue:
self.memory_input = torch.zeros(1, device=inputs.device).repeat(B, self.frame_channels * self.memory_size)
else:
self.memory_input = torch.zeros(1, device=inputs.device).repeat(B, self.frame_channels)
# decoder states
self.attention_rnn_hidden = torch.zeros(1, device=inputs.device).repeat(B, 256)
self.decoder_rnn_hiddens = [
torch.zeros(1, device=inputs.device).repeat(B, 256) for idx in range(len(self.decoder_rnns))
]
self.context_vec = inputs.data.new(B, self.in_channels).zero_()
# cache attention inputs
self.processed_inputs = self.attention.preprocess_inputs(inputs)
def _parse_outputs(self, outputs, attentions, stop_tokens):
# Back to batch first
attentions = torch.stack(attentions).transpose(0, 1)
stop_tokens = torch.stack(stop_tokens).transpose(0, 1)
outputs = torch.stack(outputs).transpose(0, 1).contiguous()
outputs = outputs.view(outputs.size(0), -1, self.frame_channels)
outputs = outputs.transpose(1, 2)
return outputs, attentions, stop_tokens
def decode(self, inputs, mask=None):
# Prenet
processed_memory = self.prenet(self.memory_input)
# Attention RNN
self.attention_rnn_hidden = self.attention_rnn(
torch.cat((processed_memory, self.context_vec), -1), self.attention_rnn_hidden
)
self.context_vec = self.attention(self.attention_rnn_hidden, inputs, self.processed_inputs, mask)
# Concat RNN output and attention context vector
decoder_input = self.project_to_decoder_in(torch.cat((self.attention_rnn_hidden, self.context_vec), -1))
# Pass through the decoder RNNs
for idx, decoder_rnn in enumerate(self.decoder_rnns):
self.decoder_rnn_hiddens[idx] = decoder_rnn(decoder_input, self.decoder_rnn_hiddens[idx])
# Residual connection
decoder_input = self.decoder_rnn_hiddens[idx] + decoder_input
decoder_output = decoder_input
# predict mel vectors from decoder vectors
output = self.proj_to_mel(decoder_output)
# output = torch.sigmoid(output)
# predict stop token
stopnet_input = torch.cat([decoder_output, output], -1)
if self.separate_stopnet:
stop_token = self.stopnet(stopnet_input.detach())
else:
stop_token = self.stopnet(stopnet_input)
output = output[:, : self.r * self.frame_channels]
return output, stop_token, self.attention.attention_weights
def _update_memory_input(self, new_memory):
if self.use_memory_queue:
if self.memory_size > self.r:
# memory queue size is larger than number of frames per decoder iter
self.memory_input = torch.cat(
[new_memory, self.memory_input[:, : (self.memory_size - self.r) * self.frame_channels].clone()],
dim=-1,
)
else:
# memory queue size smaller than number of frames per decoder iter
self.memory_input = new_memory[:, : self.memory_size * self.frame_channels]
else:
# use only the last frame prediction
# assert new_memory.shape[-1] == self.r * self.frame_channels
self.memory_input = new_memory[:, self.frame_channels * (self.r - 1) :]
def forward(self, inputs, memory, mask):
"""
Args:
inputs: Encoder outputs.
memory: Decoder memory (autoregression. If None (at eval-time),
decoder outputs are used as decoder inputs. If None, it uses the last
output as the input.
mask: Attention mask for sequence padding.
Shapes:
- inputs: (B, T, D_out_enc)
- memory: (B, T_mel, D_mel)
"""
# Run greedy decoding if memory is None
memory = self._reshape_memory(memory)
outputs = []
attentions = []
stop_tokens = []
t = 0
self._init_states(inputs)
self.attention.init_states(inputs)
while len(outputs) < memory.size(0):
if t > 0:
new_memory = memory[t - 1]
self._update_memory_input(new_memory)
output, stop_token, attention = self.decode(inputs, mask)
outputs += [output]
attentions += [attention]
stop_tokens += [stop_token.squeeze(1)]
t += 1
return self._parse_outputs(outputs, attentions, stop_tokens)
def inference(self, inputs):
"""
Args:
inputs: encoder outputs.
Shapes:
- inputs: batch x time x encoder_out_dim
"""
outputs = []
attentions = []
stop_tokens = []
t = 0
self._init_states(inputs)
self.attention.init_states(inputs)
while True:
if t > 0:
new_memory = outputs[-1]
self._update_memory_input(new_memory)
output, stop_token, attention = self.decode(inputs, None)
stop_token = torch.sigmoid(stop_token.data)
outputs += [output]
attentions += [attention]
stop_tokens += [stop_token]
t += 1
if t > inputs.shape[1] / 4 and (stop_token > 0.6 or attention[:, -1].item() > 0.6):
break
if t > self.max_decoder_steps:
print(" | > Decoder stopped with 'max_decoder_steps")
break
return self._parse_outputs(outputs, attentions, stop_tokens)
class StopNet(nn.Module):
r"""Stopnet signalling decoder to stop inference.
Args:
in_features (int): feature dimension of input.
"""
def __init__(self, in_features):
super().__init__()
self.dropout = nn.Dropout(0.1)
self.linear = nn.Linear(in_features, 1)
torch.nn.init.xavier_uniform_(self.linear.weight, gain=torch.nn.init.calculate_gain("linear"))
def forward(self, inputs):
outputs = self.dropout(inputs)
outputs = self.linear(outputs)
return outputs