Spaces:
Running
Running
# coding: utf-8 | |
# adapted from https://github.com/r9y9/tacotron_pytorch | |
import torch | |
from torch import nn | |
from .attentions import init_attn | |
from .common_layers import Prenet | |
class BatchNormConv1d(nn.Module): | |
r"""A wrapper for Conv1d with BatchNorm. It sets the activation | |
function between Conv and BatchNorm layers. BatchNorm layer | |
is initialized with the TF default values for momentum and eps. | |
Args: | |
in_channels: size of each input sample | |
out_channels: size of each output samples | |
kernel_size: kernel size of conv filters | |
stride: stride of conv filters | |
padding: padding of conv filters | |
activation: activation function set b/w Conv1d and BatchNorm | |
Shapes: | |
- input: (B, D) | |
- output: (B, D) | |
""" | |
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, activation=None): | |
super().__init__() | |
self.padding = padding | |
self.padder = nn.ConstantPad1d(padding, 0) | |
self.conv1d = nn.Conv1d( | |
in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=0, bias=False | |
) | |
# Following tensorflow's default parameters | |
self.bn = nn.BatchNorm1d(out_channels, momentum=0.99, eps=1e-3) | |
self.activation = activation | |
# self.init_layers() | |
def init_layers(self): | |
if isinstance(self.activation, torch.nn.ReLU): | |
w_gain = "relu" | |
elif isinstance(self.activation, torch.nn.Tanh): | |
w_gain = "tanh" | |
elif self.activation is None: | |
w_gain = "linear" | |
else: | |
raise RuntimeError("Unknown activation function") | |
torch.nn.init.xavier_uniform_(self.conv1d.weight, gain=torch.nn.init.calculate_gain(w_gain)) | |
def forward(self, x): | |
x = self.padder(x) | |
x = self.conv1d(x) | |
x = self.bn(x) | |
if self.activation is not None: | |
x = self.activation(x) | |
return x | |
class Highway(nn.Module): | |
r"""Highway layers as explained in https://arxiv.org/abs/1505.00387 | |
Args: | |
in_features (int): size of each input sample | |
out_feature (int): size of each output sample | |
Shapes: | |
- input: (B, *, H_in) | |
- output: (B, *, H_out) | |
""" | |
# TODO: Try GLU layer | |
def __init__(self, in_features, out_feature): | |
super().__init__() | |
self.H = nn.Linear(in_features, out_feature) | |
self.H.bias.data.zero_() | |
self.T = nn.Linear(in_features, out_feature) | |
self.T.bias.data.fill_(-1) | |
self.relu = nn.ReLU() | |
self.sigmoid = nn.Sigmoid() | |
# self.init_layers() | |
def init_layers(self): | |
torch.nn.init.xavier_uniform_(self.H.weight, gain=torch.nn.init.calculate_gain("relu")) | |
torch.nn.init.xavier_uniform_(self.T.weight, gain=torch.nn.init.calculate_gain("sigmoid")) | |
def forward(self, inputs): | |
H = self.relu(self.H(inputs)) | |
T = self.sigmoid(self.T(inputs)) | |
return H * T + inputs * (1.0 - T) | |
class CBHG(nn.Module): | |
"""CBHG module: a recurrent neural network composed of: | |
- 1-d convolution banks | |
- Highway networks + residual connections | |
- Bidirectional gated recurrent units | |
Args: | |
in_features (int): sample size | |
K (int): max filter size in conv bank | |
projections (list): conv channel sizes for conv projections | |
num_highways (int): number of highways layers | |
Shapes: | |
- input: (B, C, T_in) | |
- output: (B, T_in, C*2) | |
""" | |
# pylint: disable=dangerous-default-value | |
def __init__( | |
self, | |
in_features, | |
K=16, | |
conv_bank_features=128, | |
conv_projections=[128, 128], | |
highway_features=128, | |
gru_features=128, | |
num_highways=4, | |
): | |
super().__init__() | |
self.in_features = in_features | |
self.conv_bank_features = conv_bank_features | |
self.highway_features = highway_features | |
self.gru_features = gru_features | |
self.conv_projections = conv_projections | |
self.relu = nn.ReLU() | |
# list of conv1d bank with filter size k=1...K | |
# TODO: try dilational layers instead | |
self.conv1d_banks = nn.ModuleList( | |
[ | |
BatchNormConv1d( | |
in_features, | |
conv_bank_features, | |
kernel_size=k, | |
stride=1, | |
padding=[(k - 1) // 2, k // 2], | |
activation=self.relu, | |
) | |
for k in range(1, K + 1) | |
] | |
) | |
# max pooling of conv bank, with padding | |
# TODO: try average pooling OR larger kernel size | |
out_features = [K * conv_bank_features] + conv_projections[:-1] | |
activations = [self.relu] * (len(conv_projections) - 1) | |
activations += [None] | |
# setup conv1d projection layers | |
layer_set = [] | |
for in_size, out_size, ac in zip(out_features, conv_projections, activations): | |
layer = BatchNormConv1d(in_size, out_size, kernel_size=3, stride=1, padding=[1, 1], activation=ac) | |
layer_set.append(layer) | |
self.conv1d_projections = nn.ModuleList(layer_set) | |
# setup Highway layers | |
if self.highway_features != conv_projections[-1]: | |
self.pre_highway = nn.Linear(conv_projections[-1], highway_features, bias=False) | |
self.highways = nn.ModuleList([Highway(highway_features, highway_features) for _ in range(num_highways)]) | |
# bi-directional GPU layer | |
self.gru = nn.GRU(gru_features, gru_features, 1, batch_first=True, bidirectional=True) | |
def forward(self, inputs): | |
# (B, in_features, T_in) | |
x = inputs | |
# (B, hid_features*K, T_in) | |
# Concat conv1d bank outputs | |
outs = [] | |
for conv1d in self.conv1d_banks: | |
out = conv1d(x) | |
outs.append(out) | |
x = torch.cat(outs, dim=1) | |
assert x.size(1) == self.conv_bank_features * len(self.conv1d_banks) | |
for conv1d in self.conv1d_projections: | |
x = conv1d(x) | |
x += inputs | |
x = x.transpose(1, 2) | |
if self.highway_features != self.conv_projections[-1]: | |
x = self.pre_highway(x) | |
# Residual connection | |
# TODO: try residual scaling as in Deep Voice 3 | |
# TODO: try plain residual layers | |
for highway in self.highways: | |
x = highway(x) | |
# (B, T_in, hid_features*2) | |
# TODO: replace GRU with convolution as in Deep Voice 3 | |
self.gru.flatten_parameters() | |
outputs, _ = self.gru(x) | |
return outputs | |
class EncoderCBHG(nn.Module): | |
r"""CBHG module with Encoder specific arguments""" | |
def __init__(self): | |
super().__init__() | |
self.cbhg = CBHG( | |
128, | |
K=16, | |
conv_bank_features=128, | |
conv_projections=[128, 128], | |
highway_features=128, | |
gru_features=128, | |
num_highways=4, | |
) | |
def forward(self, x): | |
return self.cbhg(x) | |
class Encoder(nn.Module): | |
r"""Stack Prenet and CBHG module for encoder | |
Args: | |
inputs (FloatTensor): embedding features | |
Shapes: | |
- inputs: (B, T, D_in) | |
- outputs: (B, T, 128 * 2) | |
""" | |
def __init__(self, in_features): | |
super().__init__() | |
self.prenet = Prenet(in_features, out_features=[256, 128]) | |
self.cbhg = EncoderCBHG() | |
def forward(self, inputs): | |
# B x T x prenet_dim | |
outputs = self.prenet(inputs) | |
outputs = self.cbhg(outputs.transpose(1, 2)) | |
return outputs | |
class PostCBHG(nn.Module): | |
def __init__(self, mel_dim): | |
super().__init__() | |
self.cbhg = CBHG( | |
mel_dim, | |
K=8, | |
conv_bank_features=128, | |
conv_projections=[256, mel_dim], | |
highway_features=128, | |
gru_features=128, | |
num_highways=4, | |
) | |
def forward(self, x): | |
return self.cbhg(x) | |
class Decoder(nn.Module): | |
"""Tacotron decoder. | |
Args: | |
in_channels (int): number of input channels. | |
frame_channels (int): number of feature frame channels. | |
r (int): number of outputs per time step (reduction rate). | |
memory_size (int): size of the past window. if <= 0 memory_size = r | |
attn_type (string): type of attention used in decoder. | |
attn_windowing (bool): if true, define an attention window centered to maximum | |
attention response. It provides more robust attention alignment especially | |
at interence time. | |
attn_norm (string): attention normalization function. 'sigmoid' or 'softmax'. | |
prenet_type (string): 'original' or 'bn'. | |
prenet_dropout (float): prenet dropout rate. | |
forward_attn (bool): if true, use forward attention method. https://arxiv.org/abs/1807.06736 | |
trans_agent (bool): if true, use transition agent. https://arxiv.org/abs/1807.06736 | |
forward_attn_mask (bool): if true, mask attention values smaller than a threshold. | |
location_attn (bool): if true, use location sensitive attention. | |
attn_K (int): number of attention heads for GravesAttention. | |
separate_stopnet (bool): if true, detach stopnet input to prevent gradient flow. | |
d_vector_dim (int): size of speaker embedding vector, for multi-speaker training. | |
max_decoder_steps (int): Maximum number of steps allowed for the decoder. Defaults to 500. | |
""" | |
# Pylint gets confused by PyTorch conventions here | |
# pylint: disable=attribute-defined-outside-init | |
def __init__( | |
self, | |
in_channels, | |
frame_channels, | |
r, | |
memory_size, | |
attn_type, | |
attn_windowing, | |
attn_norm, | |
prenet_type, | |
prenet_dropout, | |
forward_attn, | |
trans_agent, | |
forward_attn_mask, | |
location_attn, | |
attn_K, | |
separate_stopnet, | |
max_decoder_steps, | |
): | |
super().__init__() | |
self.r_init = r | |
self.r = r | |
self.in_channels = in_channels | |
self.max_decoder_steps = max_decoder_steps | |
self.use_memory_queue = memory_size > 0 | |
self.memory_size = memory_size if memory_size > 0 else r | |
self.frame_channels = frame_channels | |
self.separate_stopnet = separate_stopnet | |
self.query_dim = 256 | |
# memory -> |Prenet| -> processed_memory | |
prenet_dim = frame_channels * self.memory_size if self.use_memory_queue else frame_channels | |
self.prenet = Prenet(prenet_dim, prenet_type, prenet_dropout, out_features=[256, 128]) | |
# processed_inputs, processed_memory -> |Attention| -> Attention, attention, RNN_State | |
# attention_rnn generates queries for the attention mechanism | |
self.attention_rnn = nn.GRUCell(in_channels + 128, self.query_dim) | |
self.attention = init_attn( | |
attn_type=attn_type, | |
query_dim=self.query_dim, | |
embedding_dim=in_channels, | |
attention_dim=128, | |
location_attention=location_attn, | |
attention_location_n_filters=32, | |
attention_location_kernel_size=31, | |
windowing=attn_windowing, | |
norm=attn_norm, | |
forward_attn=forward_attn, | |
trans_agent=trans_agent, | |
forward_attn_mask=forward_attn_mask, | |
attn_K=attn_K, | |
) | |
# (processed_memory | attention context) -> |Linear| -> decoder_RNN_input | |
self.project_to_decoder_in = nn.Linear(256 + in_channels, 256) | |
# decoder_RNN_input -> |RNN| -> RNN_state | |
self.decoder_rnns = nn.ModuleList([nn.GRUCell(256, 256) for _ in range(2)]) | |
# RNN_state -> |Linear| -> mel_spec | |
self.proj_to_mel = nn.Linear(256, frame_channels * self.r_init) | |
# learn init values instead of zero init. | |
self.stopnet = StopNet(256 + frame_channels * self.r_init) | |
def set_r(self, new_r): | |
self.r = new_r | |
def _reshape_memory(self, memory): | |
""" | |
Reshape the spectrograms for given 'r' | |
""" | |
# Grouping multiple frames if necessary | |
if memory.size(-1) == self.frame_channels: | |
memory = memory.view(memory.shape[0], memory.size(1) // self.r, -1) | |
# Time first (T_decoder, B, frame_channels) | |
memory = memory.transpose(0, 1) | |
return memory | |
def _init_states(self, inputs): | |
""" | |
Initialization of decoder states | |
""" | |
B = inputs.size(0) | |
# go frame as zeros matrix | |
if self.use_memory_queue: | |
self.memory_input = torch.zeros(1, device=inputs.device).repeat(B, self.frame_channels * self.memory_size) | |
else: | |
self.memory_input = torch.zeros(1, device=inputs.device).repeat(B, self.frame_channels) | |
# decoder states | |
self.attention_rnn_hidden = torch.zeros(1, device=inputs.device).repeat(B, 256) | |
self.decoder_rnn_hiddens = [ | |
torch.zeros(1, device=inputs.device).repeat(B, 256) for idx in range(len(self.decoder_rnns)) | |
] | |
self.context_vec = inputs.data.new(B, self.in_channels).zero_() | |
# cache attention inputs | |
self.processed_inputs = self.attention.preprocess_inputs(inputs) | |
def _parse_outputs(self, outputs, attentions, stop_tokens): | |
# Back to batch first | |
attentions = torch.stack(attentions).transpose(0, 1) | |
stop_tokens = torch.stack(stop_tokens).transpose(0, 1) | |
outputs = torch.stack(outputs).transpose(0, 1).contiguous() | |
outputs = outputs.view(outputs.size(0), -1, self.frame_channels) | |
outputs = outputs.transpose(1, 2) | |
return outputs, attentions, stop_tokens | |
def decode(self, inputs, mask=None): | |
# Prenet | |
processed_memory = self.prenet(self.memory_input) | |
# Attention RNN | |
self.attention_rnn_hidden = self.attention_rnn( | |
torch.cat((processed_memory, self.context_vec), -1), self.attention_rnn_hidden | |
) | |
self.context_vec = self.attention(self.attention_rnn_hidden, inputs, self.processed_inputs, mask) | |
# Concat RNN output and attention context vector | |
decoder_input = self.project_to_decoder_in(torch.cat((self.attention_rnn_hidden, self.context_vec), -1)) | |
# Pass through the decoder RNNs | |
for idx, decoder_rnn in enumerate(self.decoder_rnns): | |
self.decoder_rnn_hiddens[idx] = decoder_rnn(decoder_input, self.decoder_rnn_hiddens[idx]) | |
# Residual connection | |
decoder_input = self.decoder_rnn_hiddens[idx] + decoder_input | |
decoder_output = decoder_input | |
# predict mel vectors from decoder vectors | |
output = self.proj_to_mel(decoder_output) | |
# output = torch.sigmoid(output) | |
# predict stop token | |
stopnet_input = torch.cat([decoder_output, output], -1) | |
if self.separate_stopnet: | |
stop_token = self.stopnet(stopnet_input.detach()) | |
else: | |
stop_token = self.stopnet(stopnet_input) | |
output = output[:, : self.r * self.frame_channels] | |
return output, stop_token, self.attention.attention_weights | |
def _update_memory_input(self, new_memory): | |
if self.use_memory_queue: | |
if self.memory_size > self.r: | |
# memory queue size is larger than number of frames per decoder iter | |
self.memory_input = torch.cat( | |
[new_memory, self.memory_input[:, : (self.memory_size - self.r) * self.frame_channels].clone()], | |
dim=-1, | |
) | |
else: | |
# memory queue size smaller than number of frames per decoder iter | |
self.memory_input = new_memory[:, : self.memory_size * self.frame_channels] | |
else: | |
# use only the last frame prediction | |
# assert new_memory.shape[-1] == self.r * self.frame_channels | |
self.memory_input = new_memory[:, self.frame_channels * (self.r - 1) :] | |
def forward(self, inputs, memory, mask): | |
""" | |
Args: | |
inputs: Encoder outputs. | |
memory: Decoder memory (autoregression. If None (at eval-time), | |
decoder outputs are used as decoder inputs. If None, it uses the last | |
output as the input. | |
mask: Attention mask for sequence padding. | |
Shapes: | |
- inputs: (B, T, D_out_enc) | |
- memory: (B, T_mel, D_mel) | |
""" | |
# Run greedy decoding if memory is None | |
memory = self._reshape_memory(memory) | |
outputs = [] | |
attentions = [] | |
stop_tokens = [] | |
t = 0 | |
self._init_states(inputs) | |
self.attention.init_states(inputs) | |
while len(outputs) < memory.size(0): | |
if t > 0: | |
new_memory = memory[t - 1] | |
self._update_memory_input(new_memory) | |
output, stop_token, attention = self.decode(inputs, mask) | |
outputs += [output] | |
attentions += [attention] | |
stop_tokens += [stop_token.squeeze(1)] | |
t += 1 | |
return self._parse_outputs(outputs, attentions, stop_tokens) | |
def inference(self, inputs): | |
""" | |
Args: | |
inputs: encoder outputs. | |
Shapes: | |
- inputs: batch x time x encoder_out_dim | |
""" | |
outputs = [] | |
attentions = [] | |
stop_tokens = [] | |
t = 0 | |
self._init_states(inputs) | |
self.attention.init_states(inputs) | |
while True: | |
if t > 0: | |
new_memory = outputs[-1] | |
self._update_memory_input(new_memory) | |
output, stop_token, attention = self.decode(inputs, None) | |
stop_token = torch.sigmoid(stop_token.data) | |
outputs += [output] | |
attentions += [attention] | |
stop_tokens += [stop_token] | |
t += 1 | |
if t > inputs.shape[1] / 4 and (stop_token > 0.6 or attention[:, -1].item() > 0.6): | |
break | |
if t > self.max_decoder_steps: | |
print(" | > Decoder stopped with 'max_decoder_steps") | |
break | |
return self._parse_outputs(outputs, attentions, stop_tokens) | |
class StopNet(nn.Module): | |
r"""Stopnet signalling decoder to stop inference. | |
Args: | |
in_features (int): feature dimension of input. | |
""" | |
def __init__(self, in_features): | |
super().__init__() | |
self.dropout = nn.Dropout(0.1) | |
self.linear = nn.Linear(in_features, 1) | |
torch.nn.init.xavier_uniform_(self.linear.weight, gain=torch.nn.init.calculate_gain("linear")) | |
def forward(self, inputs): | |
outputs = self.dropout(inputs) | |
outputs = self.linear(outputs) | |
return outputs | |