Spaces:
Running
Running
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from .attentions import init_attn | |
from .common_layers import Linear, Prenet | |
# pylint: disable=no-value-for-parameter | |
# pylint: disable=unexpected-keyword-arg | |
class ConvBNBlock(nn.Module): | |
r"""Convolutions with Batch Normalization and non-linear activation. | |
Args: | |
in_channels (int): number of input channels. | |
out_channels (int): number of output channels. | |
kernel_size (int): convolution kernel size. | |
activation (str): 'relu', 'tanh', None (linear). | |
Shapes: | |
- input: (B, C_in, T) | |
- output: (B, C_out, T) | |
""" | |
def __init__(self, in_channels, out_channels, kernel_size, activation=None): | |
super().__init__() | |
assert (kernel_size - 1) % 2 == 0 | |
padding = (kernel_size - 1) // 2 | |
self.convolution1d = nn.Conv1d(in_channels, out_channels, kernel_size, padding=padding) | |
self.batch_normalization = nn.BatchNorm1d(out_channels, momentum=0.1, eps=1e-5) | |
self.dropout = nn.Dropout(p=0.5) | |
if activation == "relu": | |
self.activation = nn.ReLU() | |
elif activation == "tanh": | |
self.activation = nn.Tanh() | |
else: | |
self.activation = nn.Identity() | |
def forward(self, x): | |
o = self.convolution1d(x) | |
o = self.batch_normalization(o) | |
o = self.activation(o) | |
o = self.dropout(o) | |
return o | |
class Postnet(nn.Module): | |
r"""Tacotron2 Postnet | |
Args: | |
in_out_channels (int): number of output channels. | |
Shapes: | |
- input: (B, C_in, T) | |
- output: (B, C_in, T) | |
""" | |
def __init__(self, in_out_channels, num_convs=5): | |
super().__init__() | |
self.convolutions = nn.ModuleList() | |
self.convolutions.append(ConvBNBlock(in_out_channels, 512, kernel_size=5, activation="tanh")) | |
for _ in range(1, num_convs - 1): | |
self.convolutions.append(ConvBNBlock(512, 512, kernel_size=5, activation="tanh")) | |
self.convolutions.append(ConvBNBlock(512, in_out_channels, kernel_size=5, activation=None)) | |
def forward(self, x): | |
o = x | |
for layer in self.convolutions: | |
o = layer(o) | |
return o | |
class Encoder(nn.Module): | |
r"""Tacotron2 Encoder | |
Args: | |
in_out_channels (int): number of input and output channels. | |
Shapes: | |
- input: (B, C_in, T) | |
- output: (B, C_in, T) | |
""" | |
def __init__(self, in_out_channels=512): | |
super().__init__() | |
self.convolutions = nn.ModuleList() | |
for _ in range(3): | |
self.convolutions.append(ConvBNBlock(in_out_channels, in_out_channels, 5, "relu")) | |
self.lstm = nn.LSTM( | |
in_out_channels, int(in_out_channels / 2), num_layers=1, batch_first=True, bias=True, bidirectional=True | |
) | |
self.rnn_state = None | |
def forward(self, x, input_lengths): | |
o = x | |
for layer in self.convolutions: | |
o = layer(o) | |
o = o.transpose(1, 2) | |
o = nn.utils.rnn.pack_padded_sequence(o, input_lengths.cpu(), batch_first=True) | |
self.lstm.flatten_parameters() | |
o, _ = self.lstm(o) | |
o, _ = nn.utils.rnn.pad_packed_sequence(o, batch_first=True) | |
return o | |
def inference(self, x): | |
o = x | |
for layer in self.convolutions: | |
o = layer(o) | |
o = o.transpose(1, 2) | |
# self.lstm.flatten_parameters() | |
o, _ = self.lstm(o) | |
return o | |
# adapted from https://github.com/NVIDIA/tacotron2/ | |
class Decoder(nn.Module): | |
"""Tacotron2 decoder. We don't use Zoneout but Dropout between RNN layers. | |
Args: | |
in_channels (int): number of input channels. | |
frame_channels (int): number of feature frame channels. | |
r (int): number of outputs per time step (reduction rate). | |
memory_size (int): size of the past window. if <= 0 memory_size = r | |
attn_type (string): type of attention used in decoder. | |
attn_win (bool): if true, define an attention window centered to maximum | |
attention response. It provides more robust attention alignment especially | |
at interence time. | |
attn_norm (string): attention normalization function. 'sigmoid' or 'softmax'. | |
prenet_type (string): 'original' or 'bn'. | |
prenet_dropout (float): prenet dropout rate. | |
forward_attn (bool): if true, use forward attention method. https://arxiv.org/abs/1807.06736 | |
trans_agent (bool): if true, use transition agent. https://arxiv.org/abs/1807.06736 | |
forward_attn_mask (bool): if true, mask attention values smaller than a threshold. | |
location_attn (bool): if true, use location sensitive attention. | |
attn_K (int): number of attention heads for GravesAttention. | |
separate_stopnet (bool): if true, detach stopnet input to prevent gradient flow. | |
max_decoder_steps (int): Maximum number of steps allowed for the decoder. Defaults to 10000. | |
""" | |
# Pylint gets confused by PyTorch conventions here | |
# pylint: disable=attribute-defined-outside-init | |
def __init__( | |
self, | |
in_channels, | |
frame_channels, | |
r, | |
attn_type, | |
attn_win, | |
attn_norm, | |
prenet_type, | |
prenet_dropout, | |
forward_attn, | |
trans_agent, | |
forward_attn_mask, | |
location_attn, | |
attn_K, | |
separate_stopnet, | |
max_decoder_steps, | |
): | |
super().__init__() | |
self.frame_channels = frame_channels | |
self.r_init = r | |
self.r = r | |
self.encoder_embedding_dim = in_channels | |
self.separate_stopnet = separate_stopnet | |
self.max_decoder_steps = max_decoder_steps | |
self.stop_threshold = 0.5 | |
# model dimensions | |
self.query_dim = 1024 | |
self.decoder_rnn_dim = 1024 | |
self.prenet_dim = 256 | |
self.attn_dim = 128 | |
self.p_attention_dropout = 0.1 | |
self.p_decoder_dropout = 0.1 | |
# memory -> |Prenet| -> processed_memory | |
prenet_dim = self.frame_channels | |
self.prenet = Prenet( | |
prenet_dim, prenet_type, prenet_dropout, out_features=[self.prenet_dim, self.prenet_dim], bias=False | |
) | |
self.attention_rnn = nn.LSTMCell(self.prenet_dim + in_channels, self.query_dim, bias=True) | |
self.attention = init_attn( | |
attn_type=attn_type, | |
query_dim=self.query_dim, | |
embedding_dim=in_channels, | |
attention_dim=128, | |
location_attention=location_attn, | |
attention_location_n_filters=32, | |
attention_location_kernel_size=31, | |
windowing=attn_win, | |
norm=attn_norm, | |
forward_attn=forward_attn, | |
trans_agent=trans_agent, | |
forward_attn_mask=forward_attn_mask, | |
attn_K=attn_K, | |
) | |
self.decoder_rnn = nn.LSTMCell(self.query_dim + in_channels, self.decoder_rnn_dim, bias=True) | |
self.linear_projection = Linear(self.decoder_rnn_dim + in_channels, self.frame_channels * self.r_init) | |
self.stopnet = nn.Sequential( | |
nn.Dropout(0.1), | |
Linear(self.decoder_rnn_dim + self.frame_channels * self.r_init, 1, bias=True, init_gain="sigmoid"), | |
) | |
self.memory_truncated = None | |
def set_r(self, new_r): | |
self.r = new_r | |
def get_go_frame(self, inputs): | |
B = inputs.size(0) | |
memory = torch.zeros(1, device=inputs.device).repeat(B, self.frame_channels * self.r) | |
return memory | |
def _init_states(self, inputs, mask, keep_states=False): | |
B = inputs.size(0) | |
# T = inputs.size(1) | |
if not keep_states: | |
self.query = torch.zeros(1, device=inputs.device).repeat(B, self.query_dim) | |
self.attention_rnn_cell_state = torch.zeros(1, device=inputs.device).repeat(B, self.query_dim) | |
self.decoder_hidden = torch.zeros(1, device=inputs.device).repeat(B, self.decoder_rnn_dim) | |
self.decoder_cell = torch.zeros(1, device=inputs.device).repeat(B, self.decoder_rnn_dim) | |
self.context = torch.zeros(1, device=inputs.device).repeat(B, self.encoder_embedding_dim) | |
self.inputs = inputs | |
self.processed_inputs = self.attention.preprocess_inputs(inputs) | |
self.mask = mask | |
def _reshape_memory(self, memory): | |
""" | |
Reshape the spectrograms for given 'r' | |
""" | |
# Grouping multiple frames if necessary | |
if memory.size(-1) == self.frame_channels: | |
memory = memory.view(memory.shape[0], memory.size(1) // self.r, -1) | |
# Time first (T_decoder, B, frame_channels) | |
memory = memory.transpose(0, 1) | |
return memory | |
def _parse_outputs(self, outputs, stop_tokens, alignments): | |
alignments = torch.stack(alignments).transpose(0, 1) | |
stop_tokens = torch.stack(stop_tokens).transpose(0, 1) | |
outputs = torch.stack(outputs).transpose(0, 1).contiguous() | |
outputs = outputs.view(outputs.size(0), -1, self.frame_channels) | |
outputs = outputs.transpose(1, 2) | |
return outputs, stop_tokens, alignments | |
def _update_memory(self, memory): | |
if len(memory.shape) == 2: | |
return memory[:, self.frame_channels * (self.r - 1) :] | |
return memory[:, :, self.frame_channels * (self.r - 1) :] | |
def decode(self, memory): | |
""" | |
shapes: | |
- memory: B x r * self.frame_channels | |
""" | |
# self.context: B x D_en | |
# query_input: B x D_en + (r * self.frame_channels) | |
query_input = torch.cat((memory, self.context), -1) | |
# self.query and self.attention_rnn_cell_state : B x D_attn_rnn | |
self.query, self.attention_rnn_cell_state = self.attention_rnn( | |
query_input, (self.query, self.attention_rnn_cell_state) | |
) | |
self.query = F.dropout(self.query, self.p_attention_dropout, self.training) | |
self.attention_rnn_cell_state = F.dropout( | |
self.attention_rnn_cell_state, self.p_attention_dropout, self.training | |
) | |
# B x D_en | |
self.context = self.attention(self.query, self.inputs, self.processed_inputs, self.mask) | |
# B x (D_en + D_attn_rnn) | |
decoder_rnn_input = torch.cat((self.query, self.context), -1) | |
# self.decoder_hidden and self.decoder_cell: B x D_decoder_rnn | |
self.decoder_hidden, self.decoder_cell = self.decoder_rnn( | |
decoder_rnn_input, (self.decoder_hidden, self.decoder_cell) | |
) | |
self.decoder_hidden = F.dropout(self.decoder_hidden, self.p_decoder_dropout, self.training) | |
# B x (D_decoder_rnn + D_en) | |
decoder_hidden_context = torch.cat((self.decoder_hidden, self.context), dim=1) | |
# B x (self.r * self.frame_channels) | |
decoder_output = self.linear_projection(decoder_hidden_context) | |
# B x (D_decoder_rnn + (self.r * self.frame_channels)) | |
stopnet_input = torch.cat((self.decoder_hidden, decoder_output), dim=1) | |
if self.separate_stopnet: | |
stop_token = self.stopnet(stopnet_input.detach()) | |
else: | |
stop_token = self.stopnet(stopnet_input) | |
# select outputs for the reduction rate self.r | |
decoder_output = decoder_output[:, : self.r * self.frame_channels] | |
return decoder_output, self.attention.attention_weights, stop_token | |
def forward(self, inputs, memories, mask): | |
r"""Train Decoder with teacher forcing. | |
Args: | |
inputs: Encoder outputs. | |
memories: Feature frames for teacher-forcing. | |
mask: Attention mask for sequence padding. | |
Shapes: | |
- inputs: (B, T, D_out_enc) | |
- memory: (B, T_mel, D_mel) | |
- outputs: (B, T_mel, D_mel) | |
- alignments: (B, T_in, T_out) | |
- stop_tokens: (B, T_out) | |
""" | |
memory = self.get_go_frame(inputs).unsqueeze(0) | |
memories = self._reshape_memory(memories) | |
memories = torch.cat((memory, memories), dim=0) | |
memories = self._update_memory(memories) | |
memories = self.prenet(memories) | |
self._init_states(inputs, mask=mask) | |
self.attention.init_states(inputs) | |
outputs, stop_tokens, alignments = [], [], [] | |
while len(outputs) < memories.size(0) - 1: | |
memory = memories[len(outputs)] | |
decoder_output, attention_weights, stop_token = self.decode(memory) | |
outputs += [decoder_output.squeeze(1)] | |
stop_tokens += [stop_token.squeeze(1)] | |
alignments += [attention_weights] | |
outputs, stop_tokens, alignments = self._parse_outputs(outputs, stop_tokens, alignments) | |
return outputs, alignments, stop_tokens | |
def inference(self, inputs): | |
r"""Decoder inference without teacher forcing and use | |
Stopnet to stop decoder. | |
Args: | |
inputs: Encoder outputs. | |
Shapes: | |
- inputs: (B, T, D_out_enc) | |
- outputs: (B, T_mel, D_mel) | |
- alignments: (B, T_in, T_out) | |
- stop_tokens: (B, T_out) | |
""" | |
memory = self.get_go_frame(inputs) | |
memory = self._update_memory(memory) | |
self._init_states(inputs, mask=None) | |
self.attention.init_states(inputs) | |
outputs, stop_tokens, alignments, t = [], [], [], 0 | |
while True: | |
memory = self.prenet(memory) | |
decoder_output, alignment, stop_token = self.decode(memory) | |
stop_token = torch.sigmoid(stop_token.data) | |
outputs += [decoder_output.squeeze(1)] | |
stop_tokens += [stop_token] | |
alignments += [alignment] | |
if stop_token > self.stop_threshold and t > inputs.shape[0] // 2: | |
break | |
if len(outputs) == self.max_decoder_steps: | |
print(f" > Decoder stopped with `max_decoder_steps` {self.max_decoder_steps}") | |
break | |
memory = self._update_memory(decoder_output) | |
t += 1 | |
outputs, stop_tokens, alignments = self._parse_outputs(outputs, stop_tokens, alignments) | |
return outputs, alignments, stop_tokens | |
def inference_truncated(self, inputs): | |
""" | |
Preserve decoder states for continuous inference | |
""" | |
if self.memory_truncated is None: | |
self.memory_truncated = self.get_go_frame(inputs) | |
self._init_states(inputs, mask=None, keep_states=False) | |
else: | |
self._init_states(inputs, mask=None, keep_states=True) | |
self.attention.init_states(inputs) | |
outputs, stop_tokens, alignments, t = [], [], [], 0 | |
while True: | |
memory = self.prenet(self.memory_truncated) | |
decoder_output, alignment, stop_token = self.decode(memory) | |
stop_token = torch.sigmoid(stop_token.data) | |
outputs += [decoder_output.squeeze(1)] | |
stop_tokens += [stop_token] | |
alignments += [alignment] | |
if stop_token > 0.7: | |
break | |
if len(outputs) == self.max_decoder_steps: | |
print(" | > Decoder stopped with 'max_decoder_steps") | |
break | |
self.memory_truncated = decoder_output | |
t += 1 | |
outputs, stop_tokens, alignments = self._parse_outputs(outputs, stop_tokens, alignments) | |
return outputs, alignments, stop_tokens | |
def inference_step(self, inputs, t, memory=None): | |
""" | |
For debug purposes | |
""" | |
if t == 0: | |
memory = self.get_go_frame(inputs) | |
self._init_states(inputs, mask=None) | |
memory = self.prenet(memory) | |
decoder_output, stop_token, alignment = self.decode(memory) | |
stop_token = torch.sigmoid(stop_token.data) | |
memory = decoder_output | |
return decoder_output, stop_token, alignment | |