File size: 3,624 Bytes
de2aabe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Subset
from model import get_model, save_model
from tqdm import tqdm

def get_transforms():
    """
    Define the image transformations
    """
    return transforms.Compose([
        transforms.Resize(224),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], 
                           std=[0.229, 0.224, 0.225])
    ])

def get_data(subset_size=None):
    """
    Load and prepare the dataset
    Args:
        subset_size (int): If provided, return only a subset of data
    """
    transform = get_transforms()
    trainset = torchvision.datasets.CIFAR10(
        root='./data', 
        train=True,
        download=True, 
        transform=transform
    )
    
    if subset_size:
        indices = torch.randperm(len(trainset))[:subset_size]
        trainset = Subset(trainset, indices)
    
    trainloader = DataLoader(
        trainset,
        batch_size=32,
        shuffle=True,
        num_workers=2
    )
    
    return trainloader

def train_model(model, trainloader, epochs=100, device='cuda'):
    """
    Train the model
    Args:
        model: The ResNet50 model
        trainloader: DataLoader for training data
        epochs (int): Number of epochs to train
        device (str): Device to train on ('cuda' or 'cpu')
    """
    model = model.to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(
        optimizer, 
        'max', 
        patience=5
    )
    
    best_acc = 0.0
    
    # Create epoch progress bar
    epoch_pbar = tqdm(range(epochs), desc='Training')
    
    for epoch in epoch_pbar:
        model.train()
        running_loss = 0.0
        correct = 0
        total = 0
        
        # Create batch progress bar
        batch_pbar = tqdm(trainloader, leave=False, desc=f'Epoch {epoch+1}')
        
        for inputs, labels in batch_pbar:
            inputs, labels = inputs.to(device), labels.to(device)
            
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            
            running_loss += loss.item()
            _, predicted = outputs.max(1)
            total += labels.size(0)
            correct += predicted.eq(labels).sum().item()
            
            # Update batch progress bar
            batch_pbar.set_postfix({'loss': f'{loss.item():.3f}'})
        
        epoch_acc = 100. * correct / total
        avg_loss = running_loss/len(trainloader)
        
        # Update epoch progress bar
        epoch_pbar.set_postfix({
            'loss': f'{avg_loss:.3f}',
            'accuracy': f'{epoch_acc:.2f}%'
        })
        
        scheduler.step(epoch_acc)
        
        if epoch_acc > best_acc:
            best_acc = epoch_acc
            save_model(model, 'best_model.pth')
            
        if epoch_acc > 70:
            print(f"\nReached target accuracy of 70%!")
            break

if __name__ == "__main__":
    # Set device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")
    
    # Get data
    trainloader = get_data(subset_size=5000)  # Using subset for initial testing
    
    # Initialize model
    model = get_model(num_classes=10)
    
    # Train model
    train_model(model, trainloader, epochs=10, device=device)