resnet-train / app.py
Sreekanth Tangirala
first commit
de2aabe
raw
history blame
1.06 kB
import gradio as gr
import torch
import torchvision.transforms as transforms
from PIL import Image
from torchvision.models import resnet50
# Load model
model = resnet50(pretrained=False)
model.fc = nn.Linear(model.fc.in_features, 10)
model.load_state_dict(torch.load('best_model.pth'))
model.eval()
# Define classes (for CIFAR-10)
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck']
def predict(image):
transform = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
img_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
outputs = model(img_tensor)
_, predicted = outputs.max(1)
return classes[predicted.item()]
# Create Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=1),
examples=[["example1.jpg"], ["example2.jpg"]]
)
iface.launch()