ssyok's picture
upgrade the UI and fix warning of standard scaler
c2b98b5
# Gradio Interface for Optical Illusion Predictor
import gradio as gr
import numpy as np
import pandas as pd
import joblib
import matplotlib.pyplot as plt
from PIL import Image
import io
import os
# Define the image folder path
image_folder = "Optical Illusion Images"
# Define the enriched folder path
enriched_folder = 'Optical Illusion Enriched Data'
master_df = pd.read_csv(f'{enriched_folder}/combined_engineered_data.csv')
# Define the trained models folder path
trained_models_folder = 'Optical Illusion - Trained Models'
# Constants for image dimensions
DISPLAY_WIDTH = 1920
DISPLAY_HEIGHT = 1080
# Image descriptions for better user understanding
IMAGE_DESCRIPTIONS = {
'duck-rabbit': 'A classic ambiguous figure that can be seen as either a duck or a rabbit',
'face-vase': 'The famous Rubin\'s vase - you might see two faces in profile or a vase',
'young-old': 'This image can appear as either a young woman or an old woman',
'princess-oldMan': 'Can be perceived as either a princess or an old man',
'lily-woman': 'This ambiguous image shows either a lily flower or a woman',
'tiger-monkey': 'You might see either a tiger or a monkey in this image'
}
# Load all saved models at startup
def load_all_models():
"""Load all saved models into memory"""
models = {}
for image_name in master_df['image_type'].unique():
try:
model_path = f'{trained_models_folder}/{image_name}_models.pkl'
models[image_name] = joblib.load(model_path)
print(f"βœ“ Loaded model for {image_name}")
except:
print(f"βœ— Could not load model for {image_name}")
return models
# Load models
all_models = load_all_models()
# Function to load and resize images
def load_illusion_images(image_folder):
"""Load optical illusion images from a folder and resize to 1920x1080"""
images = {}
for image_name in all_models.keys():
image_path = f'{image_folder}/{image_name}.png'
if os.path.exists(image_path):
# Load and resize image to 1920x1080
img = Image.open(image_path)
img_resized = img.resize((DISPLAY_WIDTH, DISPLAY_HEIGHT), Image.Resampling.LANCZOS)
images[image_name] = img_resized
print(f"βœ“ Loaded and resized image for {image_name}")
else:
print(f"βœ— Image not found for {image_name} at {image_path}")
return images
# Load images
illusion_images = load_illusion_images(image_folder)
# Create placeholder image with correct dimensions
def create_placeholder_image(image_name):
"""Create a placeholder image with the correct dimensions"""
fig, ax = plt.subplots(figsize=(19.2, 10.8), dpi=100)
# Handle None or empty image_name
if image_name is None:
display_text = 'πŸ–ΌοΈ NO IMAGE SELECTED\n\nπŸ‘† Select an image from the dropdown above'
else:
display_text = f'πŸ–ΌοΈ {image_name.upper()}\n\nπŸ‘† Click where you first look\n\n⚠️ (Image not found)'
ax.text(0.5, 0.5, display_text,
transform=ax.transAxes, ha='center', va='center',
fontsize=28, fontweight='bold', color='#666666')
ax.set_xlim(0, DISPLAY_WIDTH)
ax.set_ylim(0, DISPLAY_HEIGHT)
ax.axis('off')
ax.set_facecolor('#f8f9fa') # Light gray background for placeholder
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100, bbox_inches='tight', pad_inches=0)
buf.seek(0)
plt.close()
img = Image.open(buf)
# Ensure it's exactly 1920x1080
img_resized = img.resize((DISPLAY_WIDTH, DISPLAY_HEIGHT), Image.Resampling.LANCZOS)
return img_resized
def process_click(image_name, model_type, evt: gr.SelectData):
"""Process click on image and return prediction"""
if evt is None:
return "❗ Please click on the image where you first looked!", None, None
if image_name is None:
return "❗ Please select an image first!", None, None
# Get click coordinates (Gradio provides them in image coordinates)
click_x_img, click_y_img = evt.index
# Convert to normalized coordinates
# Gradio coordinates: (0,0) is top-left
# Our coordinates: (0,0) is center
# x range: -960 to 960, y range: -540 to 540
click_x_norm = click_x_img - (DISPLAY_WIDTH / 2) # Convert to -960 to 960
click_y_norm = (DISPLAY_HEIGHT / 2) - click_y_img # INVERTED: Convert to -540 to 540
# Get model data
if image_name not in all_models:
return f"❗ No model found for {image_name}", None, None
model_data = all_models[image_name]
# Calculate features
centroid_left = np.array([model_data['centroid_left_x'], model_data['centroid_left_y']])
centroid_right = np.array([model_data['centroid_right_x'], model_data['centroid_right_y']])
fixation = np.array([click_x_norm, click_y_norm])
dist_left = np.linalg.norm(fixation - centroid_left)
dist_right = np.linalg.norm(fixation - centroid_right)
bias = dist_right - dist_left
# Make prediction
X = pd.DataFrame([[dist_left, dist_right, bias]],
columns=['dist_to_left', 'dist_to_right', 'bias_to_left'])
model = model_data[f'{model_type}_model']
prediction = model.predict(X)[0]
probability = model.predict_proba(X)[0]
# Decode prediction
predicted_class = model_data['label_classes'][prediction]
confidence = probability[prediction]
# Create confidence level description
if confidence >= 0.8:
confidence_level = "Very High 🟒"
elif confidence >= 0.65:
confidence_level = "High 🟑"
elif confidence >= 0.5:
confidence_level = "Moderate 🟠"
else:
confidence_level = "Low πŸ”΄"
# Create detailed message
message = f"""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 1.5rem; border-radius: 10px; color: white; margin: 0.5rem 0;">
<h2 style="color: white; margin-top: 0;">πŸ” Prediction Results</h2>
<p><strong>πŸ‘† Click Location:</strong> ({click_x_img}, {click_y_img}) pixels from top-left<br>
<strong>🎯 Normalized Position:</strong> ({click_x_norm:.1f}, {click_y_norm:.1f}) from center</p>
<hr style="border-color: rgba(255,255,255,0.3);">
<p><strong>πŸ“ Distance to Left Region:</strong> {dist_left:.1f} pixels<br>
<strong>πŸ“ Distance to Right Region:</strong> {dist_right:.1f} pixels<br>
<strong>βš–οΈ Bias Score:</strong> {bias:.1f}</p>
<hr style="border-color: rgba(255,255,255,0.3);">
<h3 style="color: white;">🧠 Prediction: You likely see the {predicted_class.upper()} interpretation</h3>
<h3 style="color: white;">πŸ“Š Confidence: {confidence:.1%} ({confidence_level})</h3>
"""
# Create visualization
viz = create_visualization(image_name, click_x_norm, click_y_norm,
predicted_class, confidence, model_type)
# Get example interpretations
interpretations = {
'duck-rabbit': {'left': 'Duck πŸ¦†', 'right': 'Rabbit 🐰'},
'face-vase': {'left': 'Two Faces πŸ‘₯', 'right': 'Vase 🏺'},
'young-old': {'left': 'Young Woman πŸ‘©', 'right': 'Old Woman πŸ‘΅'},
'princess-oldMan': {'left': 'Princess πŸ‘Έ', 'right': 'Old Man πŸ‘΄'},
'lily-woman': {'left': 'Lily 🌸', 'right': 'Woman πŸ‘©'},
'tiger-monkey': {'left': 'Tiger πŸ…', 'right': 'Monkey πŸ’'}
}
if image_name in interpretations:
specific = interpretations[image_name][predicted_class]
message += f"<p><strong>🎨 What you see:</strong> {specific}</p>"
message += "</div>"
return message, viz, create_stats_table(image_name, model_type)
def create_visualization(image_name, click_x, click_y, prediction, confidence, model_type='rf'):
"""Create a visualization showing the click point, centroids, and prediction"""
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6), facecolor='#f8f9fa')
# Get model data
model_data = all_models[image_name]
centroid_left = np.array([model_data['centroid_left_x'], model_data['centroid_left_y']])
centroid_right = np.array([model_data['centroid_right_x'], model_data['centroid_right_y']])
# Left plot: Decision boundary with proper axis range
resolution = 100
x_range = np.linspace(-960, 960, resolution) # Full x range
y_range = np.linspace(-540, 540, resolution) # Full y range
xx, yy = np.meshgrid(x_range, y_range)
# Calculate features for grid
points = np.c_[xx.ravel(), yy.ravel()]
features = []
for point in points:
dist_left = np.linalg.norm(point - centroid_left)
dist_right = np.linalg.norm(point - centroid_right)
bias = dist_right - dist_left
features.append([dist_left, dist_right, bias])
X = pd.DataFrame(features, columns=['dist_to_left', 'dist_to_right', 'bias_to_left'])
model = model_data[f'{model_type}_model']
Z = model.predict(X)
Z = Z.reshape(xx.shape)
# Plot decision boundary
from matplotlib.colors import ListedColormap
colors = ListedColormap(['#a8d5ff', '#ffb3b3']) # Softer blue and red
ax1.contourf(xx, yy, Z, alpha=0.7, cmap=colors)
# Plot centroids
ax1.scatter(centroid_left[0], centroid_left[1],
c='blue', marker='*', s=500, edgecolors='black', label='Left centroid')
ax1.scatter(centroid_right[0], centroid_right[1],
c='red', marker='*', s=500, edgecolors='black', label='Right centroid')
# Plot user's click
ax1.scatter(click_x, click_y, c='green', marker='X', s=300,
edgecolors='black', linewidth=2, label='Your fixation', zorder=10)
# Draw lines to centroids
ax1.plot([click_x, centroid_left[0]], [click_y, centroid_left[1]],
'b--', alpha=0.5, linewidth=2)
ax1.plot([click_x, centroid_right[0]], [click_y, centroid_right[1]],
'r--', alpha=0.5, linewidth=2)
ax1.set_xlabel('X (pixels from center)')
ax1.set_ylabel('Y (pixels from center)')
ax1.set_title(f'Decision Space - {model_type.upper()} Model')
ax1.grid(True, alpha=0.3)
ax1.legend(loc='upper right', framealpha=0.9)
ax1.set_xlim(-960, 960) # Full width range
ax1.set_ylim(-540, 540) # Full height range
ax1.set_aspect('equal')
ax1.set_facecolor('#f8f9fa') # Light background
# Right plot: Statistics
image_df = master_df[master_df['image_type'] == image_name]
# Create bar chart of choices
choice_counts = image_df['choice'].value_counts()
bars = ax2.bar(choice_counts.index, choice_counts.values,
color=['#4b86db' if x == 'left' else '#db4b4b' for x in choice_counts.index])
# Add values on top of bars
for bar in bars:
height = bar.get_height()
ax2.text(bar.get_x() + bar.get_width()/2., height + 0.5,
f'{height:.0f}',
ha='center', va='bottom', fontsize=10)
# Add prediction annotation
ax2.text(0.5, 0.95, f'Your Predicted Choice: {prediction.upper()}',
transform=ax2.transAxes, ha='center', va='top',
fontsize=16, fontweight='bold',
bbox=dict(boxstyle='round,pad=0.5', facecolor='#c2f0c2' if prediction == 'left' else '#f0c2c2',
alpha=0.9, edgecolor='gray'))
ax2.text(0.5, 0.85, f'Confidence: {confidence:.1%}',
transform=ax2.transAxes, ha='center', va='top', fontsize=14)
ax2.set_xlabel('Interpretation')
ax2.set_ylabel('Number of Participants')
ax2.set_title(f'Overall Distribution for {image_name}')
# Add model accuracy info
ax2.text(0.5, 0.05, f'Model CV Accuracy: {model_data[f"cv_accuracy_{model_type}"]:.1%}',
transform=ax2.transAxes, ha='center', va='bottom', fontsize=12,
style='italic', alpha=0.7)
ax2.set_facecolor('#f8f9fa') # Light background
plt.tight_layout()
# Convert plot to image
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=100, bbox_inches='tight')
buf.seek(0)
plt.close()
return Image.open(buf)
def create_stats_table(image_name, model_type):
"""Create a statistics table for the selected image"""
model_data = all_models[image_name]
image_df = master_df[master_df['image_type'] == image_name]
stats = {
'Metric': ['πŸ‘₯ Total Participants', '⬅️ Left Choices', '➑️ Right Choices',
f'🎯 {model_type.upper()} Accuracy', 'βš–οΈ Class Balance', 'πŸ“Š Majority Choice'],
'Value': [
len(image_df),
model_data['class_distribution'].get('left', 0),
model_data['class_distribution'].get('right', 0),
f"{model_data[f'cv_accuracy_{model_type}']:.1%}",
f"{min(model_data['class_distribution'].values()) / len(image_df):.1%}",
f"{image_df['choice'].mode()[0].title()} ({image_df['choice'].value_counts().max()}/{len(image_df)})"
]
}
return pd.DataFrame(stats)
# Custom CSS for better styling
css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.main-header {
text-align: center;
margin-bottom: 2rem;
padding: 1.5rem;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
border-radius: 15px;
color: white;
box-shadow: 0 4px 15px rgba(0,0,0,0.1);
}
.instruction-box {
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
padding: 1rem;
border-radius: 10px;
color: white;
margin: 1rem 0;
}
.stats-highlight {
background-color: #f8f9fa;
border-left: 4px solid #007bff;
padding: 1rem;
margin: 0.5rem 0;
}
"""
# Create Gradio Interface
with gr.Blocks(title="🧠 Optical Illusion First Fixation Predictor",
theme=gr.themes.Soft(), css=css) as demo:
gr.HTML("""
<div class="main-header">
<h1>🧠 Optical Illusion First Fixation Predictor</h1>
<h3>Can we predict what you see based on where you look?</h3>
<p>This AI-powered tool analyzes your first fixation point to predict which interpretation of an ambiguous image you'll perceive!</p>
</div>
""")
with gr.Row():
with gr.Column(scale=2):
# Image selection with description
available_images = list(all_models.keys()) if all_models else []
default_image = available_images[0] if available_images else None
image_choice = gr.Dropdown(
choices=available_images,
value=default_image,
label="πŸ–ΌοΈ Select Optical Illusion",
info="Choose which ambiguous image to analyze"
)
# Display image description
image_description = gr.Markdown(
value=IMAGE_DESCRIPTIONS.get(default_image, "Select an image to see its description.") if default_image else "Select an image to see its description.",
label="πŸ“– Image Description"
)
# Model selection with enhanced info
model_type = gr.Radio(
choices=[("Random Forest (Recommended)", "rf"), ("Logistic Regression", "lr")],
value="rf",
label="πŸ” Prediction Model",
info="Random Forest typically provides better accuracy for this task",
container=True
)
# Display image with better styling
image_display = gr.Image(
label="πŸ‘† Click where your eyes first landed on the image",
interactive=True,
type="pil",
height=540, # Reduced for better mobile compatibility
width=960,
elem_classes="main-image"
)
with gr.Column(scale=1):
# Results section with enhanced styling
prediction_output = gr.Markdown(
label="🧠 Prediction Results",
value="""<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 1rem; border-radius: 10px; color: white;">
<strong>πŸ‘† Click on the image to get your prediction!</strong><br><br>
The AI will analyze where you looked first and predict what you're likely to see.
</div>""",
elem_classes="stats-highlight"
)
stats_table = gr.DataFrame(label="πŸ“Š Image Statistics")
# Visualization output with better layout
with gr.Row():
visualization_output = gr.Image(
label="πŸ“ˆ Analysis Visualization",
type="pil"
)
# Enhanced information sections
with gr.Accordion("ℹ️ How It Works", open=False):
gr.Markdown("""
### πŸ€– The Science Behind the Prediction
**🎯 Feature Extraction:**
- We calculate the distance from your click point to the centroid of each interpretation region
- A "bias score" measures which region you're closer to
**🧠 Machine Learning Models:**
- **Random Forest:** Uses multiple decision trees for robust predictions
- **Logistic Regression:** A linear approach that's fast and interpretable
**πŸ“Š Training Process:**
- Trained on eye-tracking data from multiple participants
- Uses Leave-One-Participant-Out Cross-Validation for unbiased evaluation
- Ensures the model generalizes to new users
**🎨 Coordinate System:**
- Center of image = (0, 0)
- X-axis: -960 to +960 pixels (left to right)
- Y-axis: -540 to +540 pixels (bottom to top)
""")
with gr.Accordion("πŸ“Š Model Performance", open=False):
if all_models:
summary_data = []
for img_name, model_data in all_models.items():
summary_data.append({
'Image': img_name.replace('-', ' ').title(),
'RF Accuracy': f"{model_data['cv_accuracy_rf']:.1%}",
'LR Accuracy': f"{model_data['cv_accuracy_lr']:.1%}",
'Participants': model_data['total_samples'],
'Best Model': 'RF' if model_data['cv_accuracy_rf'] > model_data['cv_accuracy_lr'] else 'LR'
})
gr.DataFrame(
value=pd.DataFrame(summary_data),
label="Cross-Validation Performance Summary"
)
# Function to update image and description
def update_image_and_description(image_name):
# Handle None case
if image_name is None:
empty_stats = pd.DataFrame({
'Metric': ['Select an image to see statistics'],
'Value': ['']
})
return (create_placeholder_image(None),
"Select an image to see its description.",
"""<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 1rem; border-radius: 10px; color: white;">
<strong>πŸ‘† Please select an image first!</strong>
</div>""",
empty_stats)
# Update description
description = IMAGE_DESCRIPTIONS.get(image_name, "Description not available.")
# Use real images if available, otherwise use placeholder
if image_name in illusion_images:
# Create initial stats table with proper data
model_data = all_models[image_name]
image_df = master_df[master_df['image_type'] == image_name]
stats = {
'Metric': ['πŸ‘₯ Total Participants', '⬅️ Left Choices', '➑️ Right Choices',
'🎯 RF Accuracy', 'βš–οΈ Class Balance', 'πŸ“Š Majority Choice'],
'Value': [
len(image_df),
model_data['class_distribution'].get('left', 0),
model_data['class_distribution'].get('right', 0),
f"{model_data['cv_accuracy_rf']:.1%}",
f"{min(model_data['class_distribution'].values()) / len(image_df):.1%}",
f"{image_df['choice'].mode()[0].title()} ({image_df['choice'].value_counts().max()}/{len(image_df)})"
]
}
return (illusion_images[image_name],
f"**{description}**",
"""<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 1rem; border-radius: 10px; color: white;">
<strong>πŸ‘† Click on the image to get your prediction!</strong><br><br>
The AI will analyze where you looked first and predict what you're likely to see.
</div>""",
pd.DataFrame(stats))
else:
empty_stats = pd.DataFrame({
'Metric': ['Image not found'],
'Value': ['']
})
return (create_placeholder_image(image_name),
f"**{description}**",
"""<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 1rem; border-radius: 10px; color: white;">
<strong>⚠️ Image file not found!</strong>
</div>""",
empty_stats)
# Connect events
image_choice.change(
fn=update_image_and_description,
inputs=[image_choice],
outputs=[image_display, image_description, prediction_output, stats_table]
)
# Handle click event
image_display.select(
fn=process_click,
inputs=[image_choice, model_type],
outputs=[prediction_output, visualization_output, stats_table]
)
# Load initial image
demo.load(
fn=update_image_and_description,
inputs=[image_choice],
outputs=[image_display, image_description, prediction_output, stats_table]
)
# Enhanced examples section
if available_images:
gr.Markdown("## πŸ“Œ Quick Examples")
with gr.Row():
example_list = []
for img in ["duck-rabbit", "face-vase", "young-old", "tiger-monkey"]:
if img in available_images:
example_list.append([img, "rf"])
if example_list:
gr.Examples(
examples=example_list,
inputs=[image_choice, model_type],
label="Try these popular illusions"
)
# Enhanced footer
gr.HTML("""
<div style="text-align: center; margin-top: 2rem; padding: 1.5rem; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); border-radius: 15px; color: white;">
<h4>πŸ”¬ WID2003 Cognitive Science Group Assignment - OCC 2 Group 2</h4>
<p><strong>Universiti Malaya</strong> | 2025</p>
<p style="font-size: 0.9em; opacity: 0.8;">Vote for Us!</p>
</div>
""")
# Debug info
print(f"\nImage folder: {image_folder}")
print(f"Images loaded: {list(illusion_images.keys())}")
print(f"Models loaded: {list(all_models.keys())}")
print(f"Image dimensions: {DISPLAY_WIDTH}x{DISPLAY_HEIGHT}")
# Launch the app
if __name__ == "__main__":
demo.launch(
# share=True,
# debug=True
)