|
import gradio as gr |
|
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns |
|
|
|
from src.about import ( |
|
CITATION_BUTTON_LABEL, |
|
CITATION_BUTTON_TEXT, |
|
EVALUATION_QUEUE_TEXT, |
|
INTRODUCTION_TEXT, |
|
LLM_BENCHMARKS_TEXT, |
|
TITLE, |
|
) |
|
from src.display.css_html_js import custom_css |
|
from src.display.utils import ( |
|
BENCHMARK_COLS, |
|
COLS, |
|
EVAL_COLS, |
|
EVAL_TYPES, |
|
AutoEvalColumn, |
|
ModelType, |
|
fields, |
|
WeightType, |
|
Precision |
|
) |
|
from src.envs import EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH |
|
from src.populate import get_evaluation_queue_df, get_leaderboard_df |
|
from src.submission.submit import add_new_eval |
|
from src.leaderboard.security_eval import check_safetensors |
|
|
|
|
|
print("Creating leaderboard DataFrame...") |
|
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) |
|
print(f"LEADERBOARD_DF shape: {LEADERBOARD_DF.shape}") |
|
print(f"LEADERBOARD_DF columns: {LEADERBOARD_DF.columns.tolist()}") |
|
print(f"LEADERBOARD_DF data:\n{LEADERBOARD_DF}") |
|
|
|
print("\nGetting evaluation queue DataFrames...") |
|
( |
|
finished_eval_queue_df, |
|
running_eval_queue_df, |
|
pending_eval_queue_df, |
|
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) |
|
|
|
def get_field_mapping(): |
|
"""Create a mapping from display names to field names.""" |
|
auto_eval_fields = fields(AutoEvalColumn) |
|
return {f.name: f for f in auto_eval_fields} |
|
|
|
def create_empty_dataframe(field_mapping): |
|
"""Create an empty DataFrame with the correct columns.""" |
|
import pandas as pd |
|
return pd.DataFrame(columns=[f.name for f in field_mapping.values()]) |
|
|
|
def verify_columns(dataframe, field_mapping): |
|
"""Verify all required columns are present.""" |
|
for col in dataframe.columns: |
|
if col not in field_mapping: |
|
print(f"Warning: Column {col} not found in field mapping") |
|
|
|
def init_leaderboard(dataframe): |
|
print(f"Initializing leaderboard with DataFrame shape: {dataframe.shape}") |
|
|
|
field_mapping = get_field_mapping() |
|
print(f"Field mapping: {field_mapping}") |
|
|
|
if dataframe is None or len(dataframe) == 0: |
|
dataframe = create_empty_dataframe(field_mapping) |
|
print("Created empty DataFrame with correct columns") |
|
|
|
verify_columns(dataframe, field_mapping) |
|
|
|
return Leaderboard( |
|
value=dataframe, |
|
datatype=["str" if col not in field_mapping else field_mapping[col].type for col in dataframe.columns], |
|
select_columns=SelectColumns( |
|
default_selection=[col for col in dataframe.columns if col in field_mapping and field_mapping[col].displayed_by_default], |
|
cant_deselect=[col for col in dataframe.columns if col in field_mapping and field_mapping[col].never_hidden], |
|
label="Select Columns to Display:", |
|
), |
|
search_columns=["Model", "Hub License"], |
|
hide_columns=[col for col in dataframe.columns if col in field_mapping and field_mapping[col].hidden], |
|
filter_columns=[ |
|
ColumnFilter("Type", type="checkboxgroup", label="Model types"), |
|
ColumnFilter("Weight Format", type="checkboxgroup", label="Weight Format"), |
|
ColumnFilter("Precision", type="checkboxgroup", label="Precision"), |
|
ColumnFilter( |
|
"#Params (B)", |
|
type="slider", |
|
min=0.01, |
|
max=150, |
|
label="Select the number of parameters (B)", |
|
), |
|
ColumnFilter( |
|
"Available on Hub", type="boolean", label="Deleted/incomplete", default=True |
|
), |
|
], |
|
bool_checkboxgroup_label="Hide models", |
|
interactive=False, |
|
) |
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("π Security Leaderboard", elem_id="security-leaderboard-tab", id=0): |
|
leaderboard = init_leaderboard(LEADERBOARD_DF) |
|
|
|
with gr.TabItem("π About", elem_id="about-tab", id=2): |
|
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.TabItem("π Submit Model", elem_id="submit-tab", id=3): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") |
|
|
|
with gr.Column(): |
|
with gr.Accordion( |
|
f"β
Finished Evaluations ({len(finished_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
finished_eval_table = gr.components.Dataframe( |
|
value=finished_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
with gr.Accordion( |
|
f"π Running Evaluation Queue ({len(running_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
running_eval_table = gr.components.Dataframe( |
|
value=running_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
|
|
with gr.Accordion( |
|
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", |
|
open=False, |
|
): |
|
with gr.Row(): |
|
pending_eval_table = gr.components.Dataframe( |
|
value=pending_eval_queue_df, |
|
headers=EVAL_COLS, |
|
datatype=EVAL_TYPES, |
|
row_count=5, |
|
) |
|
with gr.Row(): |
|
gr.Markdown("# π Submit Your Model for Security Evaluation", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox( |
|
label="Model name (organization/model-name)", |
|
placeholder="huggingface/model-name" |
|
) |
|
revision_name_textbox = gr.Textbox( |
|
label="Revision commit", |
|
placeholder="main" |
|
) |
|
model_type = gr.Dropdown( |
|
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], |
|
label="Model type", |
|
multiselect=False, |
|
value=None, |
|
interactive=True, |
|
) |
|
|
|
with gr.Column(): |
|
precision = gr.Dropdown( |
|
choices=[i.value.name for i in Precision if i != Precision.Unknown], |
|
label="Precision", |
|
multiselect=False, |
|
value="float16", |
|
interactive=True, |
|
) |
|
weight_type = gr.Dropdown( |
|
choices=[i.value.name for i in WeightType], |
|
label="Weight Format", |
|
multiselect=False, |
|
value="Safetensors", |
|
interactive=True, |
|
) |
|
base_model_name_textbox = gr.Textbox( |
|
label="Base model (for delta or adapter weights)", |
|
placeholder="Optional: base model path" |
|
) |
|
|
|
with gr.Row(): |
|
gr.Markdown( |
|
""" |
|
### Security Requirements: |
|
1. Model weights must be in safetensors format |
|
2. Model card must include security considerations |
|
3. Model will be evaluated on secure coding capabilities |
|
""", |
|
elem_classes="markdown-text" |
|
) |
|
|
|
submit_button = gr.Button("Submit for Security Evaluation") |
|
submission_result = gr.Markdown() |
|
|
|
def handle_submission(model, base_model, revision, precision, weight_type, model_type): |
|
"""Handle new model submission.""" |
|
try: |
|
print(f"New submission received for {model}") |
|
|
|
|
|
result = add_new_eval(model, base_model, revision, precision, weight_type, model_type) |
|
|
|
|
|
global pending_eval_queue_df |
|
_, _, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) |
|
|
|
return [ |
|
gr.Markdown("Submission successful! Your model has been added to the evaluation queue. Please check the 'Pending Evaluation Queue' for status updates."), |
|
gr.Dataframe(value=pending_eval_queue_df) |
|
] |
|
except Exception as e: |
|
print(f"Submission failed: {str(e)}") |
|
return [gr.Markdown(f"Error: {str(e)}"), gr.Dataframe(value=pending_eval_queue_df)] |
|
|
|
|
|
def update_evaluation_tables(): |
|
global finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df |
|
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) |
|
return [ |
|
finished_eval_table.update(value=finished_eval_queue_df), |
|
running_eval_table.update(value=running_eval_queue_df), |
|
pending_eval_table.update(value=pending_eval_queue_df) |
|
] |
|
|
|
submit_button.click( |
|
handle_submission, |
|
[ |
|
model_name_textbox, |
|
base_model_name_textbox, |
|
revision_name_textbox, |
|
precision, |
|
weight_type, |
|
model_type, |
|
], |
|
[submission_result, pending_eval_table], |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("π Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
lines=20, |
|
elem_id="citation-button", |
|
show_copy_button=True, |
|
) |
|
|
|
|
|
import time |
|
import threading |
|
|
|
def periodic_update(): |
|
while True: |
|
time.sleep(60) |
|
demo.queue(update_evaluation_tables)() |
|
|
|
update_thread = threading.Thread(target=periodic_update, daemon=True) |
|
update_thread.start() |
|
|
|
demo.queue(default_concurrency_limit=40).launch() |
|
|