File size: 3,146 Bytes
b5ff3a4 f89e539 b5ff3a4 e85bb51 a31425b b5ff3a4 65c9ca0 f89e539 b5ff3a4 e85bb51 b5ff3a4 e85bb51 f89e539 e85bb51 416c906 4cf6559 a31425b 4cf6559 e85bb51 a31425b e85bb51 a31425b e85bb51 a31425b e85bb51 5fde344 e85bb51 a31425b e85bb51 1c7365b e85bb51 a31425b 5fde344 a31425b e85bb51 a31425b 5fde344 a31425b 5fde344 a31425b 5fde344 a31425b 1c7365b e85bb51 548bf4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import os
import duckdb
import streamlit as st
from huggingface_hub import hf_hub_download
import pandas as pd
import tempfile
import re
HF_REPO_ID = "stcoats/temp-duckdb-upload"
HF_FILENAME = "ycsep.duckdb"
LOCAL_PATH = "./ycsep.duckdb"
st.set_page_config(layout="wide")
st.title("YCSEP Audio Dataset Viewer")
# Download database if missing
if not os.path.exists(LOCAL_PATH):
st.write("Downloading from HF Hub...")
hf_hub_download(
repo_id=HF_REPO_ID,
repo_type="dataset",
filename=HF_FILENAME,
local_dir=".",
local_dir_use_symlinks=False
)
st.success("Download complete.")
# Connect (only once)
@st.cache_resource(show_spinner=False)
def get_duckdb_connection():
return duckdb.connect(LOCAL_PATH, read_only=True)
try:
con = get_duckdb_connection()
st.success("Connected to DuckDB.")
except Exception as e:
st.error(f"DuckDB connection failed: {e}")
st.stop()
# Search
query = st.text_input("Search text (case-insensitive)", "").strip()
if query:
sql = """
SELECT id, channel, video_id, video_title, speaker, start_time, end_time, text, pos_tags, upload_date, audio
FROM data
WHERE LOWER(text) LIKE LOWER(?)
LIMIT 100
"""
df = con.execute(sql, [f"%{query}%"]).df()
else:
df = con.execute("""
SELECT id, channel, video_id, video_title, speaker, start_time, end_time, text, pos_tags, upload_date, audio
FROM data
LIMIT 100
""").df()
st.markdown(f"### Showing {len(df)} results")
if len(df) == 0:
st.warning("No matches found.")
# Show table with inline audio players
for i, row in df.iterrows():
col1, col2, col3 = st.columns([3, 5, 2])
col1.markdown(f"**ID:** {row['id']}")
col1.markdown(f"**Channel:** {row['channel']}")
col1.markdown(f"**Video ID:** {row['video_id']}")
col1.markdown(f"**Video Title:** {row['video_title']}")
col1.markdown(f"**Speaker:** {row['speaker']}")
col1.markdown(f"**Start Time:** {row['start_time']}")
col1.markdown(f"**End Time:** {row['end_time']}")
col1.markdown(f"**Upload Date:** {row['upload_date']}")
highlighted_text = row['text']
if query:
highlighted_text = re.sub(f'({re.escape(query)})', r'<mark>\1</mark>', highlighted_text, flags=re.IGNORECASE)
col2.markdown(f"**Text:** {highlighted_text}", unsafe_allow_html=True)
col2.markdown(f"**POS tags:** {row['pos_tags']}")
audio_data = row["audio"]
try:
if isinstance(audio_data, (bytes, bytearray, memoryview)):
audio_bytes = bytes(audio_data)
elif isinstance(audio_data, list): # DuckDB sometimes gives list[int]
audio_bytes = bytes(audio_data)
else:
audio_bytes = None
if audio_bytes:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmpfile:
tmpfile.write(audio_bytes)
tmpfile.flush()
col3.audio(tmpfile.name, format="audio/mp3")
else:
col3.warning("Audio missing or invalid format.")
except Exception as e:
col3.error(f"Audio error: {e}")
|