File size: 3,288 Bytes
b5ff3a4 f89e539 b5ff3a4 e85bb51 a31425b b5ff3a4 65c9ca0 f89e539 b5ff3a4 e85bb51 b5ff3a4 e85bb51 f89e539 e85bb51 416c906 4cf6559 a31425b 4cf6559 e85bb51 a31425b e85bb51 a31425b e85bb51 a31425b e85bb51 5fde344 e85bb51 a47efdc e85bb51 a47efdc e85bb51 a31425b 5fde344 a31425b e85bb51 a47efdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import os
import duckdb
import streamlit as st
from huggingface_hub import hf_hub_download
import pandas as pd
import tempfile
import re
HF_REPO_ID = "stcoats/temp-duckdb-upload"
HF_FILENAME = "ycsep.duckdb"
LOCAL_PATH = "./ycsep.duckdb"
st.set_page_config(layout="wide")
st.title("YCSEP Audio Dataset Viewer")
# Download database if missing
if not os.path.exists(LOCAL_PATH):
st.write("Downloading from HF Hub...")
hf_hub_download(
repo_id=HF_REPO_ID,
repo_type="dataset",
filename=HF_FILENAME,
local_dir=".",
local_dir_use_symlinks=False
)
st.success("Download complete.")
# Connect (only once)
@st.cache_resource(show_spinner=False)
def get_duckdb_connection():
return duckdb.connect(LOCAL_PATH, read_only=True)
try:
con = get_duckdb_connection()
st.success("Connected to DuckDB.")
except Exception as e:
st.error(f"DuckDB connection failed: {e}")
st.stop()
# Search
query = st.text_input("Search text (case-insensitive)", "").strip()
if query:
sql = """
SELECT id, channel, video_id, video_title, speaker, start_time, end_time, text, pos_tags, upload_date, audio
FROM data
WHERE LOWER(text) LIKE '%' || LOWER(?) || '%'
LIMIT 100
"""
df = con.execute(sql, [query]).df()
else:
df = con.execute("""
SELECT id, channel, video_id, video_title, speaker, start_time, end_time, text, pos_tags, upload_date, audio
FROM data
LIMIT 100
""").df()
st.markdown(f"### Showing {len(df)} results")
if len(df) == 0:
st.warning("No matches found.")
else:
def render_audio_cell(audio_bytes):
try:
if isinstance(audio_bytes, (bytes, bytearray, memoryview)):
data = bytes(audio_bytes)
elif isinstance(audio_bytes, list):
data = bytes(audio_bytes)
else:
return None
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
tmp.write(data)
tmp.flush()
return tmp.name
except Exception:
return None
df["audio_file"] = df["audio"].apply(render_audio_cell)
# Build an interactive sortable table
st.markdown("### Results Table (Sortable)")
for i, row in df.iterrows():
with st.expander(f"? {row['speaker']} | {row['text'][:60]}..."):
col1, col2 = st.columns([2, 3])
with col1:
st.write(f"**ID:** {row['id']}")
st.write(f"**Channel:** {row['channel']}")
st.write(f"**Video ID:** {row['video_id']}")
st.write(f"**Video Title:** {row['video_title']}")
st.write(f"**Speaker:** {row['speaker']}")
st.write(f"**Start Time:** {row['start_time']}")
st.write(f"**End Time:** {row['end_time']}")
st.write(f"**Upload Date:** {row['upload_date']}")
st.write(f"**POS Tags:** {row['pos_tags']}")
with col2:
st.markdown(f"**Text:** {row['text']}")
if row['audio_file']:
st.audio(row['audio_file'], format="audio/mp3")
else:
st.warning("Audio not available or invalid format.")
|