|
import os |
|
import duckdb |
|
import streamlit as st |
|
from huggingface_hub import hf_hub_download |
|
import pandas as pd |
|
import tempfile |
|
import re |
|
|
|
HF_REPO_ID = "stcoats/temp-duckdb-upload" |
|
HF_FILENAME = "ycsep.duckdb" |
|
LOCAL_PATH = "./ycsep.duckdb" |
|
|
|
st.set_page_config(layout="wide") |
|
st.title("YCSEP Audio Dataset Viewer") |
|
|
|
|
|
if not os.path.exists(LOCAL_PATH): |
|
st.write("Downloading from HF Hub...") |
|
hf_hub_download( |
|
repo_id=HF_REPO_ID, |
|
repo_type="dataset", |
|
filename=HF_FILENAME, |
|
local_dir=".", |
|
local_dir_use_symlinks=False |
|
) |
|
st.success("Download complete.") |
|
|
|
|
|
@st.cache_resource(show_spinner=False) |
|
def get_duckdb_connection(): |
|
return duckdb.connect(LOCAL_PATH, read_only=True) |
|
|
|
try: |
|
con = get_duckdb_connection() |
|
st.success("Connected to DuckDB.") |
|
except Exception as e: |
|
st.error(f"DuckDB connection failed: {e}") |
|
st.stop() |
|
|
|
|
|
query = st.text_input("Search text (case-insensitive)", "").strip() |
|
|
|
if query: |
|
sql = """ |
|
SELECT id, channel, video_id, video_title, speaker, start_time, end_time, text, pos_tags, upload_date, audio |
|
FROM data |
|
WHERE LOWER(text) LIKE '%' || LOWER(?) || '%' |
|
LIMIT 100 |
|
""" |
|
df = con.execute(sql, [query]).df() |
|
else: |
|
df = con.execute(""" |
|
SELECT id, channel, video_id, video_title, speaker, start_time, end_time, text, pos_tags, upload_date, audio |
|
FROM data |
|
LIMIT 100 |
|
""").df() |
|
|
|
st.markdown(f"### Showing {len(df)} results") |
|
|
|
if len(df) == 0: |
|
st.warning("No matches found.") |
|
else: |
|
def render_audio_cell(audio_bytes): |
|
try: |
|
if isinstance(audio_bytes, (bytes, bytearray, memoryview)): |
|
data = bytes(audio_bytes) |
|
elif isinstance(audio_bytes, list): |
|
data = bytes(audio_bytes) |
|
else: |
|
return None |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp: |
|
tmp.write(data) |
|
tmp.flush() |
|
return tmp.name |
|
except Exception: |
|
return None |
|
|
|
df["audio_file"] = df["audio"].apply(render_audio_cell) |
|
|
|
|
|
st.markdown("### Results Table (Sortable)") |
|
for i, row in df.iterrows(): |
|
with st.expander(f"? {row['speaker']} | {row['text'][:60]}..."): |
|
col1, col2 = st.columns([2, 3]) |
|
|
|
with col1: |
|
st.write(f"**ID:** {row['id']}") |
|
st.write(f"**Channel:** {row['channel']}") |
|
st.write(f"**Video ID:** {row['video_id']}") |
|
st.write(f"**Video Title:** {row['video_title']}") |
|
st.write(f"**Speaker:** {row['speaker']}") |
|
st.write(f"**Start Time:** {row['start_time']}") |
|
st.write(f"**End Time:** {row['end_time']}") |
|
st.write(f"**Upload Date:** {row['upload_date']}") |
|
st.write(f"**POS Tags:** {row['pos_tags']}") |
|
|
|
with col2: |
|
st.markdown(f"**Text:** {row['text']}") |
|
if row['audio_file']: |
|
st.audio(row['audio_file'], format="audio/mp3") |
|
else: |
|
st.warning("Audio not available or invalid format.") |
|
|