shizue's picture
...
55f3023
raw
history blame
9.44 kB
import os
import json
import datetime
from email.utils import parseaddr
import gradio as gr
import pandas as pd
import numpy as np
from datasets import load_dataset, DatasetDict
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
# InfoStrings
from scorer import question_scorer
from content import (
format_error,
format_warning,
format_log,
TITLE,
INTRODUCTION_TEXT,
model_hyperlink,
)
TOKEN = os.environ.get("TOKEN", None)
OWNER = "stemdataset"
INTERNAL_DATA_DATASET = f"{OWNER}/STEM-Labels-Private"
SUBMISSION_DATASET = f"{OWNER}/submissions_internal"
CONTACT_DATASET = f"{OWNER}/contact_info"
RESULTS_DATASET = f"{OWNER}/results"
LEADERBOARD_PATH = f"{OWNER}/stem-leaderboard"
api = HfApi()
os.makedirs("scored", exist_ok=True)
# Display the results
eval_results = load_dataset(
RESULTS_DATASET,
token=TOKEN,
download_mode="force_redownload",
verification_mode="no_checks",
)
contact_infos = load_dataset(
CONTACT_DATASET,
token=TOKEN,
download_mode="force_redownload",
verification_mode="no_checks",
)
def get_dataframe_from_results(eval_results: DatasetDict, split):
local_df = eval_results[split]
local_df = local_df.map(
lambda row: {"model": model_hyperlink(row["url"], row["model"])}
)
local_df = local_df.remove_columns(["url"])
local_df = local_df.rename_column("model", "Model Name")
local_df = local_df.rename_column("model_family", "Model Family")
local_df = local_df.rename_column("average", "Average")
local_df = local_df.rename_column("science", "Science")
local_df = local_df.rename_column("technology", "Technology")
local_df = local_df.rename_column("engineering", "Engineering")
local_df = local_df.rename_column("math", "Math")
local_df = local_df.rename_column("organisation", "Organisation")
local_df = local_df.rename_column("submit_date", "Submit Date")
df = pd.DataFrame(local_df)
df = df[[
"Model Name",
"Model Family",
"Science",
"Technology",
"Engineering",
"Math",
"Average",
"Organisation",
"Submit Date",
]]
df = df.sort_values(by=["Average"], ascending=False)
numeric_cols = ["Science", "Technology", "Engineering", "Math", "Average"]
df[numeric_cols] = df[numeric_cols].round(decimals=1)
for col in numeric_cols:
df[col] = df[col].apply(lambda x: f"{x:.1f}")
return df
eval_dataframe_test = get_dataframe_from_results(
eval_results=eval_results, split="basic"
)
# Gold answers
gold_dataset = load_dataset(INTERNAL_DATA_DATASET, token=TOKEN)["labels"]
def restart_space():
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
TYPES = ["markdown", "number", "number", "number", "number", "str", "str"]
def calc_test_acc(preds: list[int]) -> dict[str, float]:
tmp_accs = {
"science": [0, 0],
"technology": [0, 0],
"engineer": [0, 0],
"math": [0, 0],
}
labels = gold_dataset
for pred, label in zip(preds, labels):
subject = label["subject"]
tmp_accs[subject][1] += 1
if pred == label["answer_idx"]:
tmp_accs[subject][0] += 1
accs = {k: v[0] / v[1] for k, v in tmp_accs.items()}
accs["average"] = np.mean(list(accs.values()))
accs = {k: round(v * 100, 1) for k, v in accs.items()}
return accs
def add_new_eval(
val_or_test: str,
model: str,
model_family: str,
url: str,
path_to_file: gr.File,
organisation: str,
mail: str,
):
curr_timestamp = datetime.datetime.today()
# Very basic email parsing
_, parsed_mail = parseaddr(mail)
if not "@" in parsed_mail:
return format_warning("Please provide a valid email adress.")
if model == "":
return format_warning("Please provide a model name.")
if model_family == "":
return format_warning("Please provide a model family.")
print(
json.dumps(
{
"val_or_test": val_or_test,
"model": model,
"model_family": model_family,
"url": url,
"path_to_file": path_to_file,
"organisation": organisation,
"mail": mail,
},
indent=2,
)
)
print("Adding new eval")
# Check if the combination model/org already exists and prints a warning message if yes
if model.lower() in set(
[m.lower() for m in eval_results["basic"]["model"]]
) and organisation.lower() in set(
[l.lower() for l in eval_results["basic"]["organisation"]]
):
return format_warning("This model has been already submitted.")
if path_to_file is None:
return format_warning("Please attach a file.")
# Save submitted file
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=path_to_file.name,
path_in_repo=f"{organisation}/{model}/{val_or_test}_raw_{curr_timestamp}.txt",
repo_type="dataset",
token=TOKEN,
)
# Compute score
file_path = path_to_file.name
with open(f"scored/{organisation}_{model}.json", "w") as scored_file:
with open(file_path, "r") as f:
preds = []
for ix, line in enumerate(f):
try:
pred_idx = int(line.strip())
except Exception:
return format_error(
f"Line {ix} is incorrectly formatted. Please fix it and resubmit your file."
)
preds.append(pred_idx)
stem_scores = calc_test_acc(preds)
scored_file.write(json.dumps(stem_scores, indent=2))
# Save scored file
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=f"scored/{organisation}_{model}.json",
path_in_repo=f"{organisation}/{model}/{val_or_test}_scored_{curr_timestamp}.json",
repo_type="dataset",
token=TOKEN,
)
# Actual submission
eval_entry = {
"model": model,
"model_family": model_family,
"url": url,
"organisation": organisation,
"submit_date": "\n".join(str(curr_timestamp).split(" ")),
"science": stem_scores["science"],
"technology": stem_scores["technology"],
"engineering": stem_scores["engineer"],
"math": stem_scores["math"],
"average": stem_scores["average"],
}
eval_results["basic"] = eval_results["basic"].add_item(eval_entry)
print(eval_results)
eval_results.push_to_hub(RESULTS_DATASET, token=TOKEN)
contact_info = {
"model": model,
"model_family": model_family,
"url": url,
"organisation": organisation,
"mail": mail,
"submit_date": "\n".join(str(curr_timestamp).split(" ")),
}
contact_infos["basic"] = contact_infos["basic"].add_item(contact_info)
contact_infos.push_to_hub(CONTACT_DATASET, token=TOKEN)
return format_log(
f"Model {model} submitted by {organisation} successfully. \nPlease refresh the leaderboard, and wait a bit to see the score displayed"
)
def refresh():
eval_results = load_dataset(
RESULTS_DATASET,
token=TOKEN,
download_mode="force_redownload",
verification_mode="no_checks",
)
eval_dataframe_test = get_dataframe_from_results(
eval_results=eval_results, split="basic"
)
return eval_dataframe_test
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tab("Results: Test"):
leaderboard_table_test = gr.components.Dataframe(
value=eval_dataframe_test,
datatype=TYPES,
interactive=False,
wrap=True,
)
refresh_button = gr.Button("Refresh")
refresh_button.click(
refresh,
inputs=[],
outputs=[
leaderboard_table_test,
],
)
with gr.Accordion("Submit a new model for evaluation"):
with gr.Row():
with gr.Column():
level_of_test = gr.Radio(["test"], value="test", label="Split")
model_name_textbox = gr.Textbox(label="Model name")
model_family_textbox = gr.Textbox(label="Model family")
url_textbox = gr.Textbox(label="Url to model information")
with gr.Column():
organisation = gr.Textbox(label="Organisation")
mail = gr.Textbox(
label="Contact email (will be stored privately, & used if there is an issue with your submission)"
)
file_output = gr.File()
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
level_of_test,
model_name_textbox,
model_family_textbox,
url_textbox,
file_output,
organisation,
mail,
],
submission_result,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch(debug=True, server_name="0.0.0.0")