Spaces:
Running
Running
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import logging | |
import random | |
from typing import Dict, Optional | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from omegaconf import DictConfig | |
from cosyvoice.utils.mask import make_pad_mask | |
import time | |
class MaskedDiffWithXvec(torch.nn.Module): | |
def __init__( | |
self, | |
input_size: int = 512, | |
output_size: int = 80, | |
spk_embed_dim: int = 192, | |
output_type: str = "mel", | |
vocab_size: int = 4096, | |
input_frame_rate: int = 50, | |
only_mask_loss: bool = True, | |
encoder: torch.nn.Module = None, | |
length_regulator: torch.nn.Module = None, | |
decoder: torch.nn.Module = None, | |
decoder_conf: Dict = { | |
"in_channels": 240, | |
"out_channel": 80, | |
"spk_emb_dim": 80, | |
"n_spks": 1, | |
"cfm_params": DictConfig( | |
{ | |
"sigma_min": 1e-06, | |
"solver": "euler", | |
"t_scheduler": "cosine", | |
"training_cfg_rate": 0.2, | |
"inference_cfg_rate": 0.7, | |
"reg_loss_type": "l1", | |
} | |
), | |
"decoder_params": { | |
"channels": [256, 256], | |
"dropout": 0.0, | |
"attention_head_dim": 64, | |
"n_blocks": 4, | |
"num_mid_blocks": 12, | |
"num_heads": 8, | |
"act_fn": "gelu", | |
}, | |
}, | |
mel_feat_conf: Dict = { | |
"n_fft": 1024, | |
"num_mels": 80, | |
"sampling_rate": 22050, | |
"hop_size": 256, | |
"win_size": 1024, | |
"fmin": 0, | |
"fmax": 8000, | |
}, | |
): | |
super().__init__() | |
self.input_size = input_size | |
self.output_size = output_size | |
self.decoder_conf = decoder_conf | |
self.mel_feat_conf = mel_feat_conf | |
self.vocab_size = vocab_size | |
self.output_type = output_type | |
self.input_frame_rate = input_frame_rate | |
logging.info(f"input frame rate={self.input_frame_rate}") | |
self.input_embedding = nn.Embedding(vocab_size, input_size) | |
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size) | |
self.encoder = encoder | |
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size) | |
self.decoder = decoder | |
self.length_regulator = length_regulator | |
self.only_mask_loss = only_mask_loss | |
def forward( | |
self, | |
batch: dict, | |
device: torch.device, | |
) -> Dict[str, Optional[torch.Tensor]]: | |
token = batch["speech_token"].to(device) | |
token_len = batch["speech_token_len"].to(device) | |
feat = batch["speech_feat"].to(device) | |
feat_len = batch["speech_feat_len"].to(device) | |
embedding = batch["embedding"].to(device) | |
# xvec projection | |
embedding = F.normalize(embedding, dim=1) | |
embedding = self.spk_embed_affine_layer(embedding) | |
# concat text and prompt_text | |
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device) | |
token = self.input_embedding(torch.clamp(token, min=0)) * mask | |
# text encode | |
h, h_lengths = self.encoder(token, token_len) | |
h = self.encoder_proj(h) | |
h, h_lengths = self.length_regulator(h, feat_len) | |
# get conditions | |
conds = torch.zeros(feat.shape, device=token.device) | |
for i, j in enumerate(feat_len): | |
if random.random() < 0.5: | |
continue | |
index = random.randint(0, int(0.3 * j)) | |
conds[i, :index] = feat[i, :index] | |
conds = conds.transpose(1, 2) | |
mask = (~make_pad_mask(feat_len)).to(h) | |
feat = F.interpolate( | |
feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest" | |
).squeeze(dim=1) | |
loss, _ = self.decoder.compute_loss( | |
feat.transpose(1, 2).contiguous(), | |
mask.unsqueeze(1), | |
h.transpose(1, 2).contiguous(), | |
embedding, | |
cond=conds, | |
) | |
return {"loss": loss} | |
def inference( | |
self, | |
token, | |
token_len, | |
prompt_token, | |
prompt_token_len, | |
prompt_feat, | |
prompt_feat_len, | |
embedding, | |
): | |
assert token.shape[0] == 1 | |
# xvec projection | |
embedding = F.normalize(embedding, dim=1) | |
embedding = self.spk_embed_affine_layer(embedding) | |
# concat text and prompt_text | |
token_len1, token_len2 = prompt_token.shape[1], token.shape[1] | |
# text encode | |
token, token_len = ( | |
torch.concat([prompt_token, token], dim=1), | |
prompt_token_len + token_len, | |
) | |
token = self.input_embedding(torch.clamp(token, min=0)) | |
h, _ = self.encoder.inference(token, token_len) | |
h = self.encoder_proj(h) | |
mel_len1, mel_len2 = prompt_feat.shape[1], int( | |
token_len2 | |
/ self.input_frame_rate | |
* self.mel_feat_conf["sampling_rate"] | |
/ self.mel_feat_conf["hop_size"] | |
) | |
h, _ = self.length_regulator.inference( | |
h[:, :token_len1], | |
h[:, token_len1:], | |
mel_len1, | |
mel_len2, | |
) | |
# get conditions | |
conds = torch.zeros( | |
[1, mel_len1 + mel_len2, self.output_size], device=token.device | |
) | |
conds[:, :mel_len1] = prompt_feat | |
conds = conds.transpose(1, 2) | |
# mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h) | |
mask = torch.ones( | |
[1, mel_len1 + mel_len2], device=h.device, dtype=torch.bfloat16 | |
) | |
feat = self.decoder( | |
mu=h.transpose(1, 2).contiguous(), | |
mask=mask.unsqueeze(1), | |
spks=embedding, | |
cond=conds, | |
n_timesteps=10, | |
) | |
feat = feat[:, :, mel_len1:] | |
assert feat.shape[2] == mel_len2 | |
return feat | |