martin
initial
67c46fd
raw
history blame
20.4 kB
# Copyright (c) Alibaba, Inc. and its affiliates.
# Part of the implementation is borrowed from espnet/espnet.
from typing import Tuple
import copy
import numpy as np
import torch
import torch.nn as nn
import torchaudio.compliance.kaldi as kaldi
from torch.nn.utils.rnn import pad_sequence
import funasr_detach.frontends.eend_ola_feature as eend_ola_feature
from funasr_detach.register import tables
def load_cmvn(cmvn_file):
with open(cmvn_file, "r", encoding="utf-8") as f:
lines = f.readlines()
means_list = []
vars_list = []
for i in range(len(lines)):
line_item = lines[i].split()
if line_item[0] == "<AddShift>":
line_item = lines[i + 1].split()
if line_item[0] == "<LearnRateCoef>":
add_shift_line = line_item[3 : (len(line_item) - 1)]
means_list = list(add_shift_line)
continue
elif line_item[0] == "<Rescale>":
line_item = lines[i + 1].split()
if line_item[0] == "<LearnRateCoef>":
rescale_line = line_item[3 : (len(line_item) - 1)]
vars_list = list(rescale_line)
continue
means = np.array(means_list).astype(np.float32)
vars = np.array(vars_list).astype(np.float32)
cmvn = np.array([means, vars])
cmvn = torch.as_tensor(cmvn, dtype=torch.float32)
return cmvn
def apply_cmvn(inputs, cmvn): # noqa
"""
Apply CMVN with mvn data
"""
device = inputs.device
dtype = inputs.dtype
frame, dim = inputs.shape
means = cmvn[0:1, :dim]
vars = cmvn[1:2, :dim]
inputs += means.to(device)
inputs *= vars.to(device)
return inputs.type(torch.float32)
def apply_lfr(inputs, lfr_m, lfr_n):
LFR_inputs = []
T = inputs.shape[0]
T_lfr = int(np.ceil(T / lfr_n))
left_padding = inputs[0].repeat((lfr_m - 1) // 2, 1)
inputs = torch.vstack((left_padding, inputs))
T = T + (lfr_m - 1) // 2
for i in range(T_lfr):
if lfr_m <= T - i * lfr_n:
LFR_inputs.append((inputs[i * lfr_n : i * lfr_n + lfr_m]).view(1, -1))
else: # process last LFR frame
num_padding = lfr_m - (T - i * lfr_n)
frame = (inputs[i * lfr_n :]).view(-1)
for _ in range(num_padding):
frame = torch.hstack((frame, inputs[-1]))
LFR_inputs.append(frame)
LFR_outputs = torch.vstack(LFR_inputs)
return LFR_outputs.type(torch.float32)
@tables.register("frontend_classes", "WavFrontend")
class WavFrontend(nn.Module):
"""Conventional frontend structure for ASR."""
def __init__(
self,
cmvn_file: str = None,
fs: int = 16000,
window: str = "hamming",
n_mels: int = 80,
frame_length: int = 25,
frame_shift: int = 10,
filter_length_min: int = -1,
filter_length_max: int = -1,
lfr_m: int = 1,
lfr_n: int = 1,
dither: float = 1.0,
snip_edges: bool = True,
upsacle_samples: bool = True,
**kwargs,
):
super().__init__()
self.fs = fs
self.window = window
self.n_mels = n_mels
self.frame_length = frame_length
self.frame_shift = frame_shift
self.filter_length_min = filter_length_min
self.filter_length_max = filter_length_max
self.lfr_m = lfr_m
self.lfr_n = lfr_n
self.cmvn_file = cmvn_file
self.dither = dither
self.snip_edges = snip_edges
self.upsacle_samples = upsacle_samples
self.cmvn = None if self.cmvn_file is None else load_cmvn(self.cmvn_file)
def output_size(self) -> int:
return self.n_mels * self.lfr_m
def forward(
self,
input: torch.Tensor,
input_lengths,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = input.size(0)
feats = []
feats_lens = []
for i in range(batch_size):
waveform_length = input_lengths[i]
waveform = input[i][:waveform_length]
if self.upsacle_samples:
waveform = waveform * (1 << 15)
waveform = waveform.unsqueeze(0)
mat = kaldi.fbank(
waveform,
num_mel_bins=self.n_mels,
frame_length=self.frame_length,
frame_shift=self.frame_shift,
dither=self.dither,
energy_floor=0.0,
window_type=self.window,
sample_frequency=self.fs,
snip_edges=self.snip_edges,
)
if self.lfr_m != 1 or self.lfr_n != 1:
mat = apply_lfr(mat, self.lfr_m, self.lfr_n)
if self.cmvn is not None:
mat = apply_cmvn(mat, self.cmvn)
feat_length = mat.size(0)
feats.append(mat)
feats_lens.append(feat_length)
feats_lens = torch.as_tensor(feats_lens)
if batch_size == 1:
feats_pad = feats[0][None, :, :]
else:
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
return feats_pad, feats_lens
def forward_fbank(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = input.size(0)
feats = []
feats_lens = []
for i in range(batch_size):
waveform_length = input_lengths[i]
waveform = input[i][:waveform_length]
waveform = waveform * (1 << 15)
waveform = waveform.unsqueeze(0)
mat = kaldi.fbank(
waveform,
num_mel_bins=self.n_mels,
frame_length=self.frame_length,
frame_shift=self.frame_shift,
dither=self.dither,
energy_floor=0.0,
window_type=self.window,
sample_frequency=self.fs,
)
feat_length = mat.size(0)
feats.append(mat)
feats_lens.append(feat_length)
feats_lens = torch.as_tensor(feats_lens)
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
return feats_pad, feats_lens
def forward_lfr_cmvn(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = input.size(0)
feats = []
feats_lens = []
for i in range(batch_size):
mat = input[i, : input_lengths[i], :]
if self.lfr_m != 1 or self.lfr_n != 1:
mat = apply_lfr(mat, self.lfr_m, self.lfr_n)
if self.cmvn is not None:
mat = apply_cmvn(mat, self.cmvn)
feat_length = mat.size(0)
feats.append(mat)
feats_lens.append(feat_length)
feats_lens = torch.as_tensor(feats_lens)
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
return feats_pad, feats_lens
@tables.register("frontend_classes", "WavFrontendOnline")
class WavFrontendOnline(nn.Module):
"""Conventional frontend structure for streaming ASR/VAD."""
def __init__(
self,
cmvn_file: str = None,
fs: int = 16000,
window: str = "hamming",
n_mels: int = 80,
frame_length: int = 25,
frame_shift: int = 10,
filter_length_min: int = -1,
filter_length_max: int = -1,
lfr_m: int = 1,
lfr_n: int = 1,
dither: float = 1.0,
snip_edges: bool = True,
upsacle_samples: bool = True,
**kwargs,
):
super().__init__()
self.fs = fs
self.window = window
self.n_mels = n_mels
self.frame_length = frame_length
self.frame_shift = frame_shift
self.frame_sample_length = int(self.frame_length * self.fs / 1000)
self.frame_shift_sample_length = int(self.frame_shift * self.fs / 1000)
self.filter_length_min = filter_length_min
self.filter_length_max = filter_length_max
self.lfr_m = lfr_m
self.lfr_n = lfr_n
self.cmvn_file = cmvn_file
self.dither = dither
self.snip_edges = snip_edges
self.upsacle_samples = upsacle_samples
# self.waveforms = None
# self.reserve_waveforms = None
# self.fbanks = None
# self.fbanks_lens = None
self.cmvn = None if self.cmvn_file is None else load_cmvn(self.cmvn_file)
# self.input_cache = None
# self.lfr_splice_cache = []
def output_size(self) -> int:
return self.n_mels * self.lfr_m
@staticmethod
def apply_cmvn(inputs: torch.Tensor, cmvn: torch.Tensor) -> torch.Tensor:
"""
Apply CMVN with mvn data
"""
device = inputs.device
dtype = inputs.dtype
frame, dim = inputs.shape
means = np.tile(cmvn[0:1, :dim], (frame, 1))
vars = np.tile(cmvn[1:2, :dim], (frame, 1))
inputs += torch.from_numpy(means).type(dtype).to(device)
inputs *= torch.from_numpy(vars).type(dtype).to(device)
return inputs.type(torch.float32)
@staticmethod
def apply_lfr(
inputs: torch.Tensor, lfr_m: int, lfr_n: int, is_final: bool = False
) -> Tuple[torch.Tensor, torch.Tensor, int]:
"""
Apply lfr with data
"""
LFR_inputs = []
# inputs = torch.vstack((inputs_lfr_cache, inputs))
T = inputs.shape[0] # include the right context
T_lfr = int(
np.ceil((T - (lfr_m - 1) // 2) / lfr_n)
) # minus the right context: (lfr_m - 1) // 2
splice_idx = T_lfr
for i in range(T_lfr):
if lfr_m <= T - i * lfr_n:
LFR_inputs.append((inputs[i * lfr_n : i * lfr_n + lfr_m]).view(1, -1))
else: # process last LFR frame
if is_final:
num_padding = lfr_m - (T - i * lfr_n)
frame = (inputs[i * lfr_n :]).view(-1)
for _ in range(num_padding):
frame = torch.hstack((frame, inputs[-1]))
LFR_inputs.append(frame)
else:
# update splice_idx and break the circle
splice_idx = i
break
splice_idx = min(T - 1, splice_idx * lfr_n)
lfr_splice_cache = inputs[splice_idx:, :]
LFR_outputs = torch.vstack(LFR_inputs)
return LFR_outputs.type(torch.float32), lfr_splice_cache, splice_idx
@staticmethod
def compute_frame_num(
sample_length: int, frame_sample_length: int, frame_shift_sample_length: int
) -> int:
frame_num = int(
(sample_length - frame_sample_length) / frame_shift_sample_length + 1
)
return (
frame_num if frame_num >= 1 and sample_length >= frame_sample_length else 0
)
def forward_fbank(
self,
input: torch.Tensor,
input_lengths: torch.Tensor,
cache: dict = {},
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
batch_size = input.size(0)
assert batch_size == 1
input = torch.cat((cache["input_cache"], input), dim=1)
frame_num = self.compute_frame_num(
input.shape[-1], self.frame_sample_length, self.frame_shift_sample_length
)
# update self.in_cache
cache["input_cache"] = input[
:, -(input.shape[-1] - frame_num * self.frame_shift_sample_length) :
]
waveforms = torch.empty(0)
feats_pad = torch.empty(0)
feats_lens = torch.empty(0)
if frame_num:
waveforms = []
feats = []
feats_lens = []
for i in range(batch_size):
waveform = input[i].cuda()
# we need accurate wave samples that used for fbank extracting
waveforms.append(
waveform[
: (
(frame_num - 1) * self.frame_shift_sample_length
+ self.frame_sample_length
)
]
)
waveform = waveform * (1 << 15)
waveform = waveform.unsqueeze(0)
mat = kaldi.fbank(
waveform,
num_mel_bins=self.n_mels,
frame_length=self.frame_length,
frame_shift=self.frame_shift,
dither=self.dither,
energy_floor=0.0,
window_type=self.window,
sample_frequency=self.fs,
)
feat_length = mat.size(0)
feats.append(mat)
feats_lens.append(feat_length)
waveforms = torch.stack(waveforms)
feats_lens = torch.as_tensor(feats_lens)
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
cache["fbanks"] = feats_pad
cache["fbanks_lens"] = copy.deepcopy(feats_lens)
return waveforms, feats_pad, feats_lens
def forward_lfr_cmvn(
self,
input: torch.Tensor,
input_lengths: torch.Tensor,
is_final: bool = False,
cache: dict = {},
**kwargs,
):
batch_size = input.size(0)
feats = []
feats_lens = []
lfr_splice_frame_idxs = []
for i in range(batch_size):
mat = input[i, : input_lengths[i], :]
if self.lfr_m != 1 or self.lfr_n != 1:
# update self.lfr_splice_cache in self.apply_lfr
# mat, self.lfr_splice_cache[i], lfr_splice_frame_idx = self.apply_lfr(mat, self.lfr_m, self.lfr_n, self.lfr_splice_cache[i],
mat, cache["lfr_splice_cache"][i], lfr_splice_frame_idx = (
self.apply_lfr(mat, self.lfr_m, self.lfr_n, is_final)
)
if self.cmvn_file is not None:
mat = self.apply_cmvn(mat, self.cmvn)
feat_length = mat.size(0)
feats.append(mat)
feats_lens.append(feat_length)
lfr_splice_frame_idxs.append(lfr_splice_frame_idx)
feats_lens = torch.as_tensor(feats_lens)
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
lfr_splice_frame_idxs = torch.as_tensor(lfr_splice_frame_idxs)
return feats_pad, feats_lens, lfr_splice_frame_idxs
def forward(self, input: torch.Tensor, input_lengths: torch.Tensor, **kwargs):
is_final = kwargs.get("is_final", False)
cache = kwargs.get("cache", {})
if len(cache) == 0:
self.init_cache(cache)
batch_size = input.shape[0]
assert (
batch_size == 1
), "we support to extract feature online only when the batch size is equal to 1 now"
waveforms, feats, feats_lengths = self.forward_fbank(
input, input_lengths, cache=cache
) # input shape: B T D
if feats.shape[0]:
cache["waveforms"] = torch.cat(
(cache["reserve_waveforms"], waveforms.cpu()), dim=1
)
if not cache["lfr_splice_cache"]: # 初始化splice_cache
for i in range(batch_size):
cache["lfr_splice_cache"].append(
feats[i][0, :].unsqueeze(dim=0).repeat((self.lfr_m - 1) // 2, 1)
)
# need the number of the input frames + self.lfr_splice_cache[0].shape[0] is greater than self.lfr_m
if feats_lengths[0] + cache["lfr_splice_cache"][0].shape[0] >= self.lfr_m:
lfr_splice_cache_tensor = torch.stack(
cache["lfr_splice_cache"]
) # B T D
feats = torch.cat((lfr_splice_cache_tensor, feats), dim=1)
feats_lengths += lfr_splice_cache_tensor[0].shape[0]
frame_from_waveforms = int(
(cache["waveforms"].shape[1] - self.frame_sample_length)
/ self.frame_shift_sample_length
+ 1
)
minus_frame = (
(self.lfr_m - 1) // 2
if cache["reserve_waveforms"].numel() == 0
else 0
)
feats, feats_lengths, lfr_splice_frame_idxs = self.forward_lfr_cmvn(
feats, feats_lengths, is_final, cache=cache
)
if self.lfr_m == 1:
cache["reserve_waveforms"] = torch.empty(0)
else:
reserve_frame_idx = lfr_splice_frame_idxs[0] - minus_frame
# print('reserve_frame_idx: ' + str(reserve_frame_idx))
# print('frame_frame: ' + str(frame_from_waveforms))
cache["reserve_waveforms"] = cache["waveforms"][
:,
reserve_frame_idx
* self.frame_shift_sample_length : frame_from_waveforms
* self.frame_shift_sample_length,
]
sample_length = (
frame_from_waveforms - 1
) * self.frame_shift_sample_length + self.frame_sample_length
cache["waveforms"] = cache["waveforms"][:, :sample_length]
else:
# update self.reserve_waveforms and self.lfr_splice_cache
cache["reserve_waveforms"] = cache["waveforms"][
:, : -(self.frame_sample_length - self.frame_shift_sample_length)
]
for i in range(batch_size):
cache["lfr_splice_cache"][i] = torch.cat(
(cache["lfr_splice_cache"][i], feats[i]), dim=0
)
return torch.empty(0), feats_lengths
else:
if is_final:
cache["waveforms"] = (
waveforms
if cache["reserve_waveforms"].numel() == 0
else cache["reserve_waveforms"]
)
feats = torch.stack(cache["lfr_splice_cache"])
feats_lengths = (
torch.zeros(batch_size, dtype=torch.int) + feats.shape[1]
)
feats, feats_lengths, _ = self.forward_lfr_cmvn(
feats, feats_lengths, is_final, cache=cache
)
# if is_final:
# self.init_cache(cache)
return feats, feats_lengths
def init_cache(self, cache: dict = {}):
cache["reserve_waveforms"] = torch.empty(0)
cache["input_cache"] = torch.empty(0)
cache["lfr_splice_cache"] = []
cache["waveforms"] = None
cache["fbanks"] = None
cache["fbanks_lens"] = None
return cache
class WavFrontendMel23(nn.Module):
"""Conventional frontend structure for ASR."""
def __init__(
self,
fs: int = 16000,
frame_length: int = 25,
frame_shift: int = 10,
lfr_m: int = 1,
lfr_n: int = 1,
**kwargs,
):
super().__init__()
self.fs = fs
self.frame_length = frame_length
self.frame_shift = frame_shift
self.lfr_m = lfr_m
self.lfr_n = lfr_n
self.n_mels = 23
def output_size(self) -> int:
return self.n_mels * (2 * self.lfr_m + 1)
def forward(
self, input: torch.Tensor, input_lengths: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = input.size(0)
feats = []
feats_lens = []
for i in range(batch_size):
waveform_length = input_lengths[i]
waveform = input[i][:waveform_length]
waveform = waveform.numpy()
mat = eend_ola_feature.stft(waveform, self.frame_length, self.frame_shift)
mat = eend_ola_feature.transform(mat)
mat = eend_ola_feature.splice(mat, context_size=self.lfr_m)
mat = mat[:: self.lfr_n]
mat = torch.from_numpy(mat)
feat_length = mat.size(0)
feats.append(mat)
feats_lens.append(feat_length)
feats_lens = torch.as_tensor(feats_lens)
feats_pad = pad_sequence(feats, batch_first=True, padding_value=0.0)
return feats_pad, feats_lens