martin
initial
67c46fd
raw
history blame
15.1 kB
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved.
# MIT License (https://opensource.org/licenses/MIT)
import torch
from typing import List, Optional, Tuple
from funasr_detach.register import tables
from funasr_detach.models.ctc.ctc import CTC
from funasr_detach.models.transformer.utils.repeat import repeat
from funasr_detach.models.transformer.layer_norm import LayerNorm
from funasr_detach.models.sanm.attention import MultiHeadedAttention
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask
from funasr_detach.models.transformer.utils.subsampling import check_short_utt
from funasr_detach.models.transformer.utils.subsampling import TooShortUttError
from funasr_detach.models.transformer.embedding import SinusoidalPositionEncoder
from funasr_detach.models.transformer.utils.multi_layer_conv import Conv1dLinear
from funasr_detach.models.transformer.utils.mask import subsequent_mask, vad_mask
from funasr_detach.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d
from funasr_detach.models.transformer.positionwise_feed_forward import (
PositionwiseFeedForward,
)
from funasr_detach.models.ct_transformer_streaming.attention import (
MultiHeadedAttentionSANMwithMask,
)
from funasr_detach.models.transformer.utils.subsampling import (
Conv2dSubsampling,
Conv2dSubsampling2,
Conv2dSubsampling6,
Conv2dSubsampling8,
)
class EncoderLayerSANM(torch.nn.Module):
def __init__(
self,
in_size,
size,
self_attn,
feed_forward,
dropout_rate,
normalize_before=True,
concat_after=False,
stochastic_depth_rate=0.0,
):
"""Construct an EncoderLayer object."""
super(EncoderLayerSANM, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.norm1 = LayerNorm(in_size)
self.norm2 = LayerNorm(size)
self.dropout = torch.nn.Dropout(dropout_rate)
self.in_size = in_size
self.size = size
self.normalize_before = normalize_before
self.concat_after = concat_after
if self.concat_after:
self.concat_linear = torch.nn.Linear(size + size, size)
self.stochastic_depth_rate = stochastic_depth_rate
self.dropout_rate = dropout_rate
def forward(
self, x, mask, cache=None, mask_shfit_chunk=None, mask_att_chunk_encoder=None
):
"""Compute encoded features.
Args:
x_input (torch.Tensor): Input tensor (#batch, time, size).
mask (torch.Tensor): Mask tensor for the input (#batch, time).
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time).
"""
skip_layer = False
# with stochastic depth, residual connection `x + f(x)` becomes
# `x <- x + 1 / (1 - p) * f(x)` at training time.
stoch_layer_coeff = 1.0
if self.training and self.stochastic_depth_rate > 0:
skip_layer = torch.rand(1).item() < self.stochastic_depth_rate
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)
if skip_layer:
if cache is not None:
x = torch.cat([cache, x], dim=1)
return x, mask
residual = x
if self.normalize_before:
x = self.norm1(x)
if self.concat_after:
x_concat = torch.cat(
(
x,
self.self_attn(
x,
mask,
mask_shfit_chunk=mask_shfit_chunk,
mask_att_chunk_encoder=mask_att_chunk_encoder,
),
),
dim=-1,
)
if self.in_size == self.size:
x = residual + stoch_layer_coeff * self.concat_linear(x_concat)
else:
x = stoch_layer_coeff * self.concat_linear(x_concat)
else:
if self.in_size == self.size:
x = residual + stoch_layer_coeff * self.dropout(
self.self_attn(
x,
mask,
mask_shfit_chunk=mask_shfit_chunk,
mask_att_chunk_encoder=mask_att_chunk_encoder,
)
)
else:
x = stoch_layer_coeff * self.dropout(
self.self_attn(
x,
mask,
mask_shfit_chunk=mask_shfit_chunk,
mask_att_chunk_encoder=mask_att_chunk_encoder,
)
)
if not self.normalize_before:
x = self.norm1(x)
residual = x
if self.normalize_before:
x = self.norm2(x)
x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm2(x)
return x, mask, cache, mask_shfit_chunk, mask_att_chunk_encoder
def forward_chunk(self, x, cache=None, chunk_size=None, look_back=0):
"""Compute encoded features.
Args:
x_input (torch.Tensor): Input tensor (#batch, time, size).
mask (torch.Tensor): Mask tensor for the input (#batch, time).
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time).
"""
residual = x
if self.normalize_before:
x = self.norm1(x)
if self.in_size == self.size:
attn, cache = self.self_attn.forward_chunk(x, cache, chunk_size, look_back)
x = residual + attn
else:
x, cache = self.self_attn.forward_chunk(x, cache, chunk_size, look_back)
if not self.normalize_before:
x = self.norm1(x)
residual = x
if self.normalize_before:
x = self.norm2(x)
x = residual + self.feed_forward(x)
if not self.normalize_before:
x = self.norm2(x)
return x, cache
@tables.register("encoder_classes", "SANMVadEncoder")
class SANMVadEncoder(torch.nn.Module):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
"""
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
input_layer: Optional[str] = "conv2d",
pos_enc_class=SinusoidalPositionEncoder,
normalize_before: bool = True,
concat_after: bool = False,
positionwise_layer_type: str = "linear",
positionwise_conv_kernel_size: int = 1,
padding_idx: int = -1,
interctc_layer_idx: List[int] = [],
interctc_use_conditioning: bool = False,
kernel_size: int = 11,
sanm_shfit: int = 0,
selfattention_layer_type: str = "sanm",
):
super().__init__()
self._output_size = output_size
if input_layer == "linear":
self.embed = torch.nn.Sequential(
torch.nn.Linear(input_size, output_size),
torch.nn.LayerNorm(output_size),
torch.nn.Dropout(dropout_rate),
torch.nn.ReLU(),
pos_enc_class(output_size, positional_dropout_rate),
)
elif input_layer == "conv2d":
self.embed = Conv2dSubsampling(input_size, output_size, dropout_rate)
elif input_layer == "conv2d2":
self.embed = Conv2dSubsampling2(input_size, output_size, dropout_rate)
elif input_layer == "conv2d6":
self.embed = Conv2dSubsampling6(input_size, output_size, dropout_rate)
elif input_layer == "conv2d8":
self.embed = Conv2dSubsampling8(input_size, output_size, dropout_rate)
elif input_layer == "embed":
self.embed = torch.nn.Sequential(
torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx),
SinusoidalPositionEncoder(),
)
elif input_layer is None:
if input_size == output_size:
self.embed = None
else:
self.embed = torch.nn.Linear(input_size, output_size)
elif input_layer == "pe":
self.embed = SinusoidalPositionEncoder()
else:
raise ValueError("unknown input_layer: " + input_layer)
self.normalize_before = normalize_before
if positionwise_layer_type == "linear":
positionwise_layer = PositionwiseFeedForward
positionwise_layer_args = (
output_size,
linear_units,
dropout_rate,
)
elif positionwise_layer_type == "conv1d":
positionwise_layer = MultiLayeredConv1d
positionwise_layer_args = (
output_size,
linear_units,
positionwise_conv_kernel_size,
dropout_rate,
)
elif positionwise_layer_type == "conv1d-linear":
positionwise_layer = Conv1dLinear
positionwise_layer_args = (
output_size,
linear_units,
positionwise_conv_kernel_size,
dropout_rate,
)
else:
raise NotImplementedError("Support only linear or conv1d.")
if selfattention_layer_type == "selfattn":
encoder_selfattn_layer = MultiHeadedAttention
encoder_selfattn_layer_args = (
attention_heads,
output_size,
attention_dropout_rate,
)
elif selfattention_layer_type == "sanm":
self.encoder_selfattn_layer = MultiHeadedAttentionSANMwithMask
encoder_selfattn_layer_args0 = (
attention_heads,
input_size,
output_size,
attention_dropout_rate,
kernel_size,
sanm_shfit,
)
encoder_selfattn_layer_args = (
attention_heads,
output_size,
output_size,
attention_dropout_rate,
kernel_size,
sanm_shfit,
)
self.encoders0 = repeat(
1,
lambda lnum: EncoderLayerSANM(
input_size,
output_size,
self.encoder_selfattn_layer(*encoder_selfattn_layer_args0),
positionwise_layer(*positionwise_layer_args),
dropout_rate,
normalize_before,
concat_after,
),
)
self.encoders = repeat(
num_blocks - 1,
lambda lnum: EncoderLayerSANM(
output_size,
output_size,
self.encoder_selfattn_layer(*encoder_selfattn_layer_args),
positionwise_layer(*positionwise_layer_args),
dropout_rate,
normalize_before,
concat_after,
),
)
if self.normalize_before:
self.after_norm = LayerNorm(output_size)
self.interctc_layer_idx = interctc_layer_idx
if len(interctc_layer_idx) > 0:
assert 0 < min(interctc_layer_idx) and max(interctc_layer_idx) < num_blocks
self.interctc_use_conditioning = interctc_use_conditioning
self.conditioning_layer = None
self.dropout = torch.nn.Dropout(dropout_rate)
def output_size(self) -> int:
return self._output_size
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
vad_indexes: torch.Tensor,
prev_states: torch.Tensor = None,
ctc: CTC = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
"""Embed positions in tensor.
Args:
xs_pad: input tensor (B, L, D)
ilens: input length (B)
prev_states: Not to be used now.
Returns:
position embedded tensor and mask
"""
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device)
sub_masks = subsequent_mask(masks.size(-1), device=xs_pad.device).unsqueeze(0)
no_future_masks = masks & sub_masks
xs_pad *= self.output_size() ** 0.5
if self.embed is None:
xs_pad = xs_pad
elif (
isinstance(self.embed, Conv2dSubsampling)
or isinstance(self.embed, Conv2dSubsampling2)
or isinstance(self.embed, Conv2dSubsampling6)
or isinstance(self.embed, Conv2dSubsampling8)
):
short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1))
if short_status:
raise TooShortUttError(
f"has {xs_pad.size(1)} frames and is too short for subsampling "
+ f"(it needs more than {limit_size} frames), return empty results",
xs_pad.size(1),
limit_size,
)
xs_pad, masks = self.embed(xs_pad, masks)
else:
xs_pad = self.embed(xs_pad)
# xs_pad = self.dropout(xs_pad)
mask_tup0 = [masks, no_future_masks]
encoder_outs = self.encoders0(xs_pad, mask_tup0)
xs_pad, _ = encoder_outs[0], encoder_outs[1]
intermediate_outs = []
for layer_idx, encoder_layer in enumerate(self.encoders):
if layer_idx + 1 == len(self.encoders):
# This is last layer.
coner_mask = torch.ones(
masks.size(0),
masks.size(-1),
masks.size(-1),
device=xs_pad.device,
dtype=torch.bool,
)
for word_index, length in enumerate(ilens):
coner_mask[word_index, :, :] = vad_mask(
masks.size(-1), vad_indexes[word_index], device=xs_pad.device
)
layer_mask = masks & coner_mask
else:
layer_mask = no_future_masks
mask_tup1 = [masks, layer_mask]
encoder_outs = encoder_layer(xs_pad, mask_tup1)
xs_pad, layer_mask = encoder_outs[0], encoder_outs[1]
if self.normalize_before:
xs_pad = self.after_norm(xs_pad)
olens = masks.squeeze(1).sum(1)
if len(intermediate_outs) > 0:
return (xs_pad, intermediate_outs), olens, None
return xs_pad, olens, None