Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import logging | |
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from collections import namedtuple | |
from dataclasses import dataclass | |
from functools import partial | |
from omegaconf import MISSING, II | |
from typing import Optional, Callable | |
from funasr_detach.models.emotion2vec.fairseq_modules import compute_mask_indices | |
from funasr_detach.models.emotion2vec.fairseq_modules import GradMultiply | |
from funasr_detach.models.emotion2vec.fairseq_modules import index_put | |
logger = logging.getLogger(__name__) | |
MaskSeed = namedtuple("MaskSeed", ["seed", "update", "ids"]) | |
MaskInfo = namedtuple("MaskInfo", ["x_unmasked", "mask", "ids_restore", "ids_keep"]) | |
class ModalitySpecificEncoder(nn.Module): | |
def __init__( | |
self, | |
modality_cfg, | |
embed_dim: int, | |
local_encoder: nn.Module, | |
project_features: nn.Module, | |
fixed_positional_encoder: Optional[nn.Module], | |
relative_positional_encoder: Optional[nn.Module], | |
context_encoder: nn.Module, | |
decoder: nn.Module, | |
get_alibi_bias: Optional[Callable[[int, int, str, str], torch.Tensor]], | |
): | |
super().__init__() | |
self.modality_cfg = modality_cfg | |
self.local_encoder = local_encoder | |
self.project_features = project_features | |
self.fixed_positional_encoder = fixed_positional_encoder | |
self.relative_positional_encoder = relative_positional_encoder | |
self.context_encoder = context_encoder | |
self.decoder = decoder | |
self.get_alibi_bias = get_alibi_bias if modality_cfg.use_alibi_encoder else None | |
self.local_grad_mult = self.modality_cfg.local_grad_mult | |
self.extra_tokens = None | |
if modality_cfg.num_extra_tokens > 0: | |
self.extra_tokens = nn.Parameter( | |
torch.zeros(1, modality_cfg.num_extra_tokens, embed_dim) | |
) | |
if not modality_cfg.init_extra_token_zero: | |
nn.init.normal_(self.extra_tokens) | |
elif self.extra_tokens.size(1) > 1: | |
nn.init.normal_(self.extra_tokens[:, 1:]) | |
self.alibi_scale = None | |
if self.get_alibi_bias is not None: | |
self.alibi_scale = nn.Parameter( | |
torch.full( | |
( | |
( | |
(modality_cfg.prenet_depth + modality_cfg.model_depth) | |
if modality_cfg.learned_alibi_scale_per_layer | |
else 1 | |
), | |
1, | |
( | |
self.modality_cfg.num_alibi_heads | |
if modality_cfg.learned_alibi_scale_per_head | |
else 1 | |
), | |
1, | |
1, | |
), | |
modality_cfg.alibi_scale, | |
dtype=torch.float, | |
), | |
requires_grad=modality_cfg.learned_alibi_scale, | |
) | |
if modality_cfg.learned_alibi and self.get_alibi_bias is not None: | |
assert modality_cfg.alibi_max_pos is not None | |
alibi_bias = self.get_alibi_bias( | |
batch_size=1, | |
time_steps=modality_cfg.alibi_max_pos, | |
heads=modality_cfg.num_alibi_heads, | |
scale=1.0, | |
dtype=torch.float, | |
device="cpu", | |
) | |
self.alibi_bias = nn.Parameter(alibi_bias) | |
self.get_alibi_bias = partial( | |
_learned_alibi_bias, alibi_bias=self.alibi_bias | |
) | |
def upgrade_state_dict_named(self, state_dict, name): | |
k = f"{name}.alibi_scale" | |
if k in state_dict and state_dict[k].dim() == 4: | |
state_dict[k] = state_dict[k].unsqueeze(0) | |
return state_dict | |
def convert_padding_mask(self, x, padding_mask): | |
return padding_mask | |
def decoder_input(self, x, mask_info: MaskInfo): | |
inp_drop = self.modality_cfg.decoder.input_dropout | |
if inp_drop > 0: | |
x = F.dropout(x, inp_drop, training=self.training, inplace=True) | |
num_extra = self.modality_cfg.num_extra_tokens | |
if mask_info is not None: | |
num_masked = mask_info.ids_restore.shape[1] - x.shape[1] + num_extra | |
mask_tokens = x.new_empty( | |
x.size(0), | |
num_masked, | |
x.size(-1), | |
).normal_(0, self.modality_cfg.mask_noise_std) | |
x_ = torch.cat([x[:, num_extra:], mask_tokens], dim=1) | |
x = torch.gather(x_, dim=1, index=mask_info.ids_restore) | |
if self.modality_cfg.decoder.add_positions_masked: | |
assert self.fixed_positional_encoder is not None | |
pos = self.fixed_positional_encoder(x, None) | |
x = x + (pos * mask_info.mask.unsqueeze(-1)) | |
else: | |
x = x[:, num_extra:] | |
if self.modality_cfg.decoder.add_positions_all: | |
assert self.fixed_positional_encoder is not None | |
x = x + self.fixed_positional_encoder(x, None) | |
return x, mask_info | |
def local_features(self, features): | |
if self.local_grad_mult > 0: | |
if self.local_grad_mult == 1.0: | |
x = self.local_encoder(features) | |
else: | |
x = GradMultiply.apply( | |
self.local_encoder(features), self.local_grad_mult | |
) | |
else: | |
with torch.no_grad(): | |
x = self.local_encoder(features) | |
x = self.project_features(x) | |
return x | |
def contextualized_features( | |
self, | |
x, | |
padding_mask, | |
mask, | |
remove_masked, | |
clone_batch: int = 1, | |
mask_seeds: Optional[torch.Tensor] = None, | |
precomputed_mask=None, | |
): | |
if padding_mask is not None: | |
padding_mask = self.convert_padding_mask(x, padding_mask) | |
local_features = x | |
if mask and clone_batch == 1: | |
local_features = local_features.clone() | |
orig_B, orig_T, _ = x.shape | |
pre_mask_B = orig_B | |
mask_info = None | |
x_pos = None | |
if self.fixed_positional_encoder is not None: | |
x = x + self.fixed_positional_encoder(x, padding_mask) | |
if mask: | |
if clone_batch > 1: | |
x = x.repeat_interleave(clone_batch, 0) | |
if mask_seeds is not None: | |
clone_hash = [ | |
int(hash((mask_seeds.seed, ind)) % 1e10) | |
for ind in range(clone_batch - 1) | |
] | |
clone_hash = torch.tensor([0] + clone_hash).long().view(1, -1) | |
id = mask_seeds.ids | |
id = id.repeat_interleave(clone_batch, 0) | |
id = id.view(-1, clone_batch) + clone_hash.to(id) | |
id = id.view(-1) | |
mask_seeds = MaskSeed( | |
seed=mask_seeds.seed, update=mask_seeds.update, ids=id | |
) | |
if padding_mask is not None: | |
padding_mask = padding_mask.repeat_interleave(clone_batch, 0) | |
x, mask_info = self.compute_mask( | |
x, | |
padding_mask, | |
mask_seed=mask_seeds, | |
apply=self.relative_positional_encoder is not None or not remove_masked, | |
precomputed_mask=precomputed_mask, | |
) | |
if self.relative_positional_encoder is not None: | |
x_pos = self.relative_positional_encoder(x) | |
masked_padding_mask = padding_mask | |
if mask and remove_masked: | |
x = mask_info.x_unmasked | |
if x_pos is not None: | |
x = x + gather_unmasked(x_pos, mask_info) | |
if padding_mask is not None and padding_mask.any(): | |
masked_padding_mask = gather_unmasked_mask(padding_mask, mask_info) | |
if not masked_padding_mask.any(): | |
masked_padding_mask = None | |
else: | |
masked_padding_mask = None | |
elif x_pos is not None: | |
x = x + x_pos | |
alibi_bias = None | |
alibi_scale = self.alibi_scale | |
if self.get_alibi_bias is not None: | |
alibi_bias = self.get_alibi_bias( | |
batch_size=pre_mask_B, | |
time_steps=orig_T, | |
heads=self.modality_cfg.num_alibi_heads, | |
dtype=torch.float32, | |
device=x.device, | |
) | |
if alibi_scale is not None: | |
alibi_scale = alibi_scale.clamp_min(0) | |
if alibi_scale.size(0) == 1: | |
alibi_bias = alibi_bias * alibi_scale.squeeze(0).type_as(alibi_bias) | |
alibi_scale = None | |
if clone_batch > 1: | |
alibi_bias = alibi_bias.repeat_interleave(clone_batch, 0) | |
if mask_info is not None and remove_masked: | |
alibi_bias = masked_alibi(alibi_bias, mask_info) | |
if self.extra_tokens is not None: | |
num = self.extra_tokens.size(1) | |
x = torch.cat([self.extra_tokens.expand(x.size(0), -1, -1), x], dim=1) | |
if masked_padding_mask is not None: | |
# B x T | |
masked_padding_mask = F.pad(masked_padding_mask, (num, 0)) | |
if alibi_bias is not None: | |
# B x H x T x T | |
alibi_bias = F.pad(alibi_bias, (num, 0, num, 0)) | |
x = self.context_encoder( | |
x, | |
masked_padding_mask, | |
alibi_bias, | |
( | |
alibi_scale[: self.modality_cfg.prenet_depth] | |
if alibi_scale is not None | |
else None | |
), | |
) | |
return { | |
"x": x, | |
"local_features": local_features, | |
"padding_mask": masked_padding_mask, | |
"alibi_bias": alibi_bias, | |
"alibi_scale": ( | |
alibi_scale[self.modality_cfg.prenet_depth :] | |
if alibi_scale is not None and alibi_scale.size(0) > 1 | |
else alibi_scale | |
), | |
"encoder_mask": mask_info, | |
} | |
def forward( | |
self, | |
features, | |
padding_mask, | |
mask: bool, | |
remove_masked: bool, | |
clone_batch: int = 1, | |
mask_seeds: Optional[torch.Tensor] = None, | |
precomputed_mask=None, | |
): | |
x = self.local_features(features) | |
return self.contextualized_features( | |
x, | |
padding_mask, | |
mask, | |
remove_masked, | |
clone_batch, | |
mask_seeds, | |
precomputed_mask, | |
) | |
def reset_parameters(self): | |
pass | |
def compute_mask( | |
self, | |
x, | |
padding_mask, | |
mask_seed: Optional[MaskSeed], | |
apply, | |
precomputed_mask, | |
): | |
if precomputed_mask is not None: | |
mask = precomputed_mask | |
mask_info = self.make_maskinfo(x, mask) | |
else: | |
B, T, C = x.shape | |
cfg = self.modality_cfg | |
mask_prob = cfg.mask_prob | |
if ( | |
cfg.mask_prob_min is not None | |
and cfg.mask_prob_min >= 0 | |
and cfg.mask_prob_min < mask_prob | |
): | |
mask_prob = np.random.uniform(cfg.mask_prob_min, mask_prob) | |
if mask_prob > 0: | |
if cfg.mask_length == 1: | |
mask_info = random_masking(x, mask_prob, mask_seed) | |
else: | |
if self.modality_cfg.inverse_mask: | |
mask_prob = 1 - mask_prob | |
mask = compute_mask_indices( | |
(B, T), | |
padding_mask, | |
mask_prob, | |
cfg.mask_length, | |
min_masks=1, | |
require_same_masks=True, | |
mask_dropout=cfg.mask_dropout, | |
add_masks=cfg.add_masks, | |
seed=mask_seed.seed if mask_seed is not None else None, | |
epoch=mask_seed.update if mask_seed is not None else None, | |
indices=mask_seed.ids if mask_seed is not None else None, | |
) | |
mask = torch.from_numpy(mask).to(device=x.device) | |
if self.modality_cfg.inverse_mask: | |
mask = 1 - mask | |
mask_info = self.make_maskinfo(x, mask) | |
else: | |
mask_info = None | |
if apply: | |
x = self.apply_mask(x, mask_info) | |
return x, mask_info | |
def make_maskinfo(self, x, mask, shape=None): | |
if shape is None: | |
B, T, D = x.shape | |
else: | |
B, T, D = shape | |
mask = mask.to(torch.uint8) | |
ids_shuffle = mask.argsort(dim=1) | |
ids_restore = ids_shuffle.argsort(dim=1).unsqueeze(-1).expand(-1, -1, D) | |
len_keep = T - mask[0].sum() | |
if self.modality_cfg.keep_masked_pct > 0: | |
len_keep += round((T - int(len_keep)) * self.modality_cfg.keep_masked_pct) | |
ids_keep = ids_shuffle[:, :len_keep] | |
if shape is not None: | |
x_unmasked = None | |
else: | |
ids_keep = ids_keep.unsqueeze(-1).expand(-1, -1, D) | |
x_unmasked = torch.gather(x, dim=1, index=ids_keep) | |
mask_info = MaskInfo( | |
x_unmasked=x_unmasked, | |
mask=mask, | |
ids_restore=ids_restore, | |
ids_keep=ids_keep, | |
) | |
return mask_info | |
def apply_mask(self, x, mask_info): | |
cfg = self.modality_cfg | |
B, T, C = x.shape | |
if mask_info is not None: | |
mask = mask_info.mask | |
if cfg.encoder_zero_mask: | |
x = x * (1 - mask.type_as(x).unsqueeze(-1)) | |
else: | |
num_masks = mask.sum().item() | |
masks = x.new_empty(num_masks, x.size(-1)).normal_( | |
0, cfg.mask_noise_std | |
) | |
x = index_put(x, mask, masks) | |
if cfg.mask_channel_prob > 0: | |
mask_channel = compute_mask_indices( | |
(B, C), | |
None, | |
cfg.mask_channel_prob, | |
cfg.mask_channel_length, | |
) | |
mask_channel = ( | |
torch.from_numpy(mask_channel) | |
.to(x.device) | |
.unsqueeze(1) | |
.expand(-1, T, -1) | |
) | |
x = index_put(x, mask_channel, 0) | |
return x | |
def remove_pretraining_modules(self, keep_decoder=False): | |
if not keep_decoder: | |
self.decoder = None | |
def get_annealed_rate(start, end, curr_step, total_steps): | |
if curr_step >= total_steps: | |
return end | |
r = end - start | |
pct_remaining = 1 - curr_step / total_steps | |
return end - r * pct_remaining | |
# adapted from MAE | |
def random_masking(x, mask_ratio, mask_seed: Optional[MaskSeed]): | |
N, L, D = x.shape # batch, length, dim | |
len_keep = int(L * (1 - mask_ratio)) | |
generator = None | |
if mask_seed is not None: | |
seed = int( | |
hash((mask_seed.seed, mask_seed.update, mask_seed.ids.sum().item())) % 1e6 | |
) | |
generator = torch.Generator(device=x.device) | |
generator.manual_seed(seed) | |
noise = torch.rand(N, L, generator=generator, device=x.device) # noise in [0, 1] | |
# sort noise for each sample | |
ids_shuffle = noise.argsort(dim=1) # ascend: small is keep, large is remove | |
ids_restore = ids_shuffle.argsort(dim=1) | |
# keep the first subset | |
ids_keep = ids_shuffle[:, :len_keep] | |
ids_keep = ids_keep.unsqueeze(-1).expand(-1, -1, D) | |
x_unmasked = torch.gather(x, dim=1, index=ids_keep) | |
# generate the binary mask: 0 is keep, 1 is remove | |
mask = torch.ones([N, L], dtype=x.dtype, device=x.device) | |
mask[:, :len_keep] = 0 | |
# unshuffle to get the binary mask | |
mask = torch.gather(mask, dim=1, index=ids_restore) | |
ids_restore = ids_restore.unsqueeze(-1).expand(-1, -1, D) | |
return MaskInfo( | |
x_unmasked=x_unmasked, mask=mask, ids_restore=ids_restore, ids_keep=ids_keep | |
) | |
def gather_unmasked(x: torch.Tensor, mask_info: MaskInfo) -> torch.Tensor: | |
return torch.gather( | |
x, | |
dim=1, | |
index=mask_info.ids_keep, | |
) | |
def gather_unmasked_mask(x: torch.Tensor, mask_info: MaskInfo) -> torch.Tensor: | |
return torch.gather( | |
x, | |
dim=1, | |
index=mask_info.ids_keep[..., 0], # ignore the feature dimension | |
) | |
def get_alibi( | |
max_positions: int, | |
attention_heads: int, | |
dims: int = 1, | |
distance: str = "manhattan", | |
): | |
def get_slopes(n): | |
def get_slopes_power_of_2(n): | |
start = 2 ** (-(2 ** -(math.log2(n) - 3))) | |
ratio = start | |
return [start * ratio**i for i in range(n)] | |
# In the paper, we only train models that have 2^a heads for some | |
# a. This function has some good properties that only occur when | |
# the input is a power of 2. To maintain that even when the number | |
# of heads is not a power of 2, we use this workaround. | |
if math.log2(n).is_integer(): | |
return get_slopes_power_of_2(n) | |
else: | |
closest_power_of_2 = 2 ** math.floor(math.log2(n)) | |
return ( | |
get_slopes_power_of_2(closest_power_of_2) | |
+ get_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2] | |
) | |
maxpos = max_positions | |
attn_heads = attention_heads | |
slopes = torch.Tensor(get_slopes(attn_heads)) | |
if dims == 1: | |
# prepare alibi position linear bias. Note that wav2vec2 is non | |
# autoregressive model so we want a symmetric mask with 0 on the | |
# diagonal and other wise linear decreasing valuees | |
pos_bias = ( | |
torch.abs( | |
torch.arange(maxpos).unsqueeze(0) - torch.arange(maxpos).unsqueeze(1) | |
) | |
* -1 | |
) | |
elif dims == 2: | |
if distance == "manhattan": | |
df = lambda x1, y1, x2, y2: abs(x1 - x2) + abs(y1 - y2) | |
elif distance == "euclidean": | |
df = lambda x1, y1, x2, y2: math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2) | |
n = math.sqrt(max_positions) | |
assert n.is_integer(), n | |
n = int(n) | |
pos_bias = torch.zeros((max_positions, max_positions)) | |
for i in range(n): | |
for j in range(n): | |
for k in range(n): | |
for l in range(n): | |
new_x = i * n + j | |
new_y = k * n + l | |
pos_bias[new_x, new_y] = -df(i, j, k, l) | |
else: | |
raise Exception(f"unsupported number of alibi dims: {dims}") | |
alibi_bias = slopes.unsqueeze(1).unsqueeze(1) * pos_bias.unsqueeze(0).expand( | |
attn_heads, -1, -1 | |
) | |
return alibi_bias | |
def get_alibi_bias( | |
alibi_biases, | |
batch_size, | |
time_steps, | |
heads, | |
dtype, | |
device, | |
dims=1, | |
distance="manhattan", | |
): | |
cache_key = f"{dims}_{heads}_{distance}" | |
buffered = alibi_biases.get(cache_key, None) | |
target_size = heads * batch_size | |
if ( | |
buffered is None | |
or buffered.size(0) < target_size | |
or buffered.size(1) < time_steps | |
or buffered.dtype != dtype | |
or buffered.device != device | |
): | |
bt = max(time_steps, buffered.size(1) if buffered is not None else 0) | |
bn = max(target_size, buffered.size(0) if buffered is not None else 0) // heads | |
buffered = ( | |
get_alibi(bt, heads, dims=dims, distance=distance) | |
.to(dtype=dtype, device=device) | |
.repeat(bn, 1, 1) | |
) | |
alibi_biases[cache_key] = buffered | |
b = buffered[:target_size, :time_steps, :time_steps] | |
b = b.view(batch_size, heads, time_steps, time_steps) | |
return b | |
def _learned_alibi_bias( | |
alibi_bias, | |
batch_size, | |
time_steps, | |
heads, | |
scale, | |
dtype, | |
device, | |
): | |
assert alibi_bias.size(1) == heads, alibi_bias.shape | |
assert alibi_bias.dtype == dtype, alibi_bias.dtype | |
assert alibi_bias.device == device, alibi_bias.device | |
if alibi_bias.size(-1) < time_steps: | |
psz = math.ceil((time_steps - alibi_bias.size(-1)) / 2) | |
alibi_bias = F.pad(alibi_bias, (psz, psz, psz, psz), mode="replicate") | |
alibi_bias = alibi_bias.expand(batch_size, -1, -1, -1) * scale | |
return alibi_bias[..., :time_steps, :time_steps] | |
def masked_alibi(alibi_bias, mask_info): | |
H = alibi_bias.size(1) | |
orig_bias = alibi_bias | |
index = mask_info.ids_keep.unsqueeze(1)[..., 0].unsqueeze(-1) | |
alibi_bias = torch.gather( | |
orig_bias, | |
dim=-2, | |
index=index.expand(-1, H, -1, mask_info.ids_restore.size(1)), | |
) | |
alibi_bias = torch.gather( | |
alibi_bias, | |
dim=-1, | |
index=index.transpose(-1, -2).expand(-1, H, alibi_bias.size(-2), -1), | |
) | |
return alibi_bias | |