martin
initial
67c46fd
raw
history blame
21.2 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import namedtuple
from dataclasses import dataclass
from functools import partial
from omegaconf import MISSING, II
from typing import Optional, Callable
from funasr_detach.models.emotion2vec.fairseq_modules import compute_mask_indices
from funasr_detach.models.emotion2vec.fairseq_modules import GradMultiply
from funasr_detach.models.emotion2vec.fairseq_modules import index_put
logger = logging.getLogger(__name__)
MaskSeed = namedtuple("MaskSeed", ["seed", "update", "ids"])
MaskInfo = namedtuple("MaskInfo", ["x_unmasked", "mask", "ids_restore", "ids_keep"])
class ModalitySpecificEncoder(nn.Module):
def __init__(
self,
modality_cfg,
embed_dim: int,
local_encoder: nn.Module,
project_features: nn.Module,
fixed_positional_encoder: Optional[nn.Module],
relative_positional_encoder: Optional[nn.Module],
context_encoder: nn.Module,
decoder: nn.Module,
get_alibi_bias: Optional[Callable[[int, int, str, str], torch.Tensor]],
):
super().__init__()
self.modality_cfg = modality_cfg
self.local_encoder = local_encoder
self.project_features = project_features
self.fixed_positional_encoder = fixed_positional_encoder
self.relative_positional_encoder = relative_positional_encoder
self.context_encoder = context_encoder
self.decoder = decoder
self.get_alibi_bias = get_alibi_bias if modality_cfg.use_alibi_encoder else None
self.local_grad_mult = self.modality_cfg.local_grad_mult
self.extra_tokens = None
if modality_cfg.num_extra_tokens > 0:
self.extra_tokens = nn.Parameter(
torch.zeros(1, modality_cfg.num_extra_tokens, embed_dim)
)
if not modality_cfg.init_extra_token_zero:
nn.init.normal_(self.extra_tokens)
elif self.extra_tokens.size(1) > 1:
nn.init.normal_(self.extra_tokens[:, 1:])
self.alibi_scale = None
if self.get_alibi_bias is not None:
self.alibi_scale = nn.Parameter(
torch.full(
(
(
(modality_cfg.prenet_depth + modality_cfg.model_depth)
if modality_cfg.learned_alibi_scale_per_layer
else 1
),
1,
(
self.modality_cfg.num_alibi_heads
if modality_cfg.learned_alibi_scale_per_head
else 1
),
1,
1,
),
modality_cfg.alibi_scale,
dtype=torch.float,
),
requires_grad=modality_cfg.learned_alibi_scale,
)
if modality_cfg.learned_alibi and self.get_alibi_bias is not None:
assert modality_cfg.alibi_max_pos is not None
alibi_bias = self.get_alibi_bias(
batch_size=1,
time_steps=modality_cfg.alibi_max_pos,
heads=modality_cfg.num_alibi_heads,
scale=1.0,
dtype=torch.float,
device="cpu",
)
self.alibi_bias = nn.Parameter(alibi_bias)
self.get_alibi_bias = partial(
_learned_alibi_bias, alibi_bias=self.alibi_bias
)
def upgrade_state_dict_named(self, state_dict, name):
k = f"{name}.alibi_scale"
if k in state_dict and state_dict[k].dim() == 4:
state_dict[k] = state_dict[k].unsqueeze(0)
return state_dict
def convert_padding_mask(self, x, padding_mask):
return padding_mask
def decoder_input(self, x, mask_info: MaskInfo):
inp_drop = self.modality_cfg.decoder.input_dropout
if inp_drop > 0:
x = F.dropout(x, inp_drop, training=self.training, inplace=True)
num_extra = self.modality_cfg.num_extra_tokens
if mask_info is not None:
num_masked = mask_info.ids_restore.shape[1] - x.shape[1] + num_extra
mask_tokens = x.new_empty(
x.size(0),
num_masked,
x.size(-1),
).normal_(0, self.modality_cfg.mask_noise_std)
x_ = torch.cat([x[:, num_extra:], mask_tokens], dim=1)
x = torch.gather(x_, dim=1, index=mask_info.ids_restore)
if self.modality_cfg.decoder.add_positions_masked:
assert self.fixed_positional_encoder is not None
pos = self.fixed_positional_encoder(x, None)
x = x + (pos * mask_info.mask.unsqueeze(-1))
else:
x = x[:, num_extra:]
if self.modality_cfg.decoder.add_positions_all:
assert self.fixed_positional_encoder is not None
x = x + self.fixed_positional_encoder(x, None)
return x, mask_info
def local_features(self, features):
if self.local_grad_mult > 0:
if self.local_grad_mult == 1.0:
x = self.local_encoder(features)
else:
x = GradMultiply.apply(
self.local_encoder(features), self.local_grad_mult
)
else:
with torch.no_grad():
x = self.local_encoder(features)
x = self.project_features(x)
return x
def contextualized_features(
self,
x,
padding_mask,
mask,
remove_masked,
clone_batch: int = 1,
mask_seeds: Optional[torch.Tensor] = None,
precomputed_mask=None,
):
if padding_mask is not None:
padding_mask = self.convert_padding_mask(x, padding_mask)
local_features = x
if mask and clone_batch == 1:
local_features = local_features.clone()
orig_B, orig_T, _ = x.shape
pre_mask_B = orig_B
mask_info = None
x_pos = None
if self.fixed_positional_encoder is not None:
x = x + self.fixed_positional_encoder(x, padding_mask)
if mask:
if clone_batch > 1:
x = x.repeat_interleave(clone_batch, 0)
if mask_seeds is not None:
clone_hash = [
int(hash((mask_seeds.seed, ind)) % 1e10)
for ind in range(clone_batch - 1)
]
clone_hash = torch.tensor([0] + clone_hash).long().view(1, -1)
id = mask_seeds.ids
id = id.repeat_interleave(clone_batch, 0)
id = id.view(-1, clone_batch) + clone_hash.to(id)
id = id.view(-1)
mask_seeds = MaskSeed(
seed=mask_seeds.seed, update=mask_seeds.update, ids=id
)
if padding_mask is not None:
padding_mask = padding_mask.repeat_interleave(clone_batch, 0)
x, mask_info = self.compute_mask(
x,
padding_mask,
mask_seed=mask_seeds,
apply=self.relative_positional_encoder is not None or not remove_masked,
precomputed_mask=precomputed_mask,
)
if self.relative_positional_encoder is not None:
x_pos = self.relative_positional_encoder(x)
masked_padding_mask = padding_mask
if mask and remove_masked:
x = mask_info.x_unmasked
if x_pos is not None:
x = x + gather_unmasked(x_pos, mask_info)
if padding_mask is not None and padding_mask.any():
masked_padding_mask = gather_unmasked_mask(padding_mask, mask_info)
if not masked_padding_mask.any():
masked_padding_mask = None
else:
masked_padding_mask = None
elif x_pos is not None:
x = x + x_pos
alibi_bias = None
alibi_scale = self.alibi_scale
if self.get_alibi_bias is not None:
alibi_bias = self.get_alibi_bias(
batch_size=pre_mask_B,
time_steps=orig_T,
heads=self.modality_cfg.num_alibi_heads,
dtype=torch.float32,
device=x.device,
)
if alibi_scale is not None:
alibi_scale = alibi_scale.clamp_min(0)
if alibi_scale.size(0) == 1:
alibi_bias = alibi_bias * alibi_scale.squeeze(0).type_as(alibi_bias)
alibi_scale = None
if clone_batch > 1:
alibi_bias = alibi_bias.repeat_interleave(clone_batch, 0)
if mask_info is not None and remove_masked:
alibi_bias = masked_alibi(alibi_bias, mask_info)
if self.extra_tokens is not None:
num = self.extra_tokens.size(1)
x = torch.cat([self.extra_tokens.expand(x.size(0), -1, -1), x], dim=1)
if masked_padding_mask is not None:
# B x T
masked_padding_mask = F.pad(masked_padding_mask, (num, 0))
if alibi_bias is not None:
# B x H x T x T
alibi_bias = F.pad(alibi_bias, (num, 0, num, 0))
x = self.context_encoder(
x,
masked_padding_mask,
alibi_bias,
(
alibi_scale[: self.modality_cfg.prenet_depth]
if alibi_scale is not None
else None
),
)
return {
"x": x,
"local_features": local_features,
"padding_mask": masked_padding_mask,
"alibi_bias": alibi_bias,
"alibi_scale": (
alibi_scale[self.modality_cfg.prenet_depth :]
if alibi_scale is not None and alibi_scale.size(0) > 1
else alibi_scale
),
"encoder_mask": mask_info,
}
def forward(
self,
features,
padding_mask,
mask: bool,
remove_masked: bool,
clone_batch: int = 1,
mask_seeds: Optional[torch.Tensor] = None,
precomputed_mask=None,
):
x = self.local_features(features)
return self.contextualized_features(
x,
padding_mask,
mask,
remove_masked,
clone_batch,
mask_seeds,
precomputed_mask,
)
def reset_parameters(self):
pass
def compute_mask(
self,
x,
padding_mask,
mask_seed: Optional[MaskSeed],
apply,
precomputed_mask,
):
if precomputed_mask is not None:
mask = precomputed_mask
mask_info = self.make_maskinfo(x, mask)
else:
B, T, C = x.shape
cfg = self.modality_cfg
mask_prob = cfg.mask_prob
if (
cfg.mask_prob_min is not None
and cfg.mask_prob_min >= 0
and cfg.mask_prob_min < mask_prob
):
mask_prob = np.random.uniform(cfg.mask_prob_min, mask_prob)
if mask_prob > 0:
if cfg.mask_length == 1:
mask_info = random_masking(x, mask_prob, mask_seed)
else:
if self.modality_cfg.inverse_mask:
mask_prob = 1 - mask_prob
mask = compute_mask_indices(
(B, T),
padding_mask,
mask_prob,
cfg.mask_length,
min_masks=1,
require_same_masks=True,
mask_dropout=cfg.mask_dropout,
add_masks=cfg.add_masks,
seed=mask_seed.seed if mask_seed is not None else None,
epoch=mask_seed.update if mask_seed is not None else None,
indices=mask_seed.ids if mask_seed is not None else None,
)
mask = torch.from_numpy(mask).to(device=x.device)
if self.modality_cfg.inverse_mask:
mask = 1 - mask
mask_info = self.make_maskinfo(x, mask)
else:
mask_info = None
if apply:
x = self.apply_mask(x, mask_info)
return x, mask_info
def make_maskinfo(self, x, mask, shape=None):
if shape is None:
B, T, D = x.shape
else:
B, T, D = shape
mask = mask.to(torch.uint8)
ids_shuffle = mask.argsort(dim=1)
ids_restore = ids_shuffle.argsort(dim=1).unsqueeze(-1).expand(-1, -1, D)
len_keep = T - mask[0].sum()
if self.modality_cfg.keep_masked_pct > 0:
len_keep += round((T - int(len_keep)) * self.modality_cfg.keep_masked_pct)
ids_keep = ids_shuffle[:, :len_keep]
if shape is not None:
x_unmasked = None
else:
ids_keep = ids_keep.unsqueeze(-1).expand(-1, -1, D)
x_unmasked = torch.gather(x, dim=1, index=ids_keep)
mask_info = MaskInfo(
x_unmasked=x_unmasked,
mask=mask,
ids_restore=ids_restore,
ids_keep=ids_keep,
)
return mask_info
def apply_mask(self, x, mask_info):
cfg = self.modality_cfg
B, T, C = x.shape
if mask_info is not None:
mask = mask_info.mask
if cfg.encoder_zero_mask:
x = x * (1 - mask.type_as(x).unsqueeze(-1))
else:
num_masks = mask.sum().item()
masks = x.new_empty(num_masks, x.size(-1)).normal_(
0, cfg.mask_noise_std
)
x = index_put(x, mask, masks)
if cfg.mask_channel_prob > 0:
mask_channel = compute_mask_indices(
(B, C),
None,
cfg.mask_channel_prob,
cfg.mask_channel_length,
)
mask_channel = (
torch.from_numpy(mask_channel)
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
x = index_put(x, mask_channel, 0)
return x
def remove_pretraining_modules(self, keep_decoder=False):
if not keep_decoder:
self.decoder = None
def get_annealed_rate(start, end, curr_step, total_steps):
if curr_step >= total_steps:
return end
r = end - start
pct_remaining = 1 - curr_step / total_steps
return end - r * pct_remaining
# adapted from MAE
def random_masking(x, mask_ratio, mask_seed: Optional[MaskSeed]):
N, L, D = x.shape # batch, length, dim
len_keep = int(L * (1 - mask_ratio))
generator = None
if mask_seed is not None:
seed = int(
hash((mask_seed.seed, mask_seed.update, mask_seed.ids.sum().item())) % 1e6
)
generator = torch.Generator(device=x.device)
generator.manual_seed(seed)
noise = torch.rand(N, L, generator=generator, device=x.device) # noise in [0, 1]
# sort noise for each sample
ids_shuffle = noise.argsort(dim=1) # ascend: small is keep, large is remove
ids_restore = ids_shuffle.argsort(dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
ids_keep = ids_keep.unsqueeze(-1).expand(-1, -1, D)
x_unmasked = torch.gather(x, dim=1, index=ids_keep)
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([N, L], dtype=x.dtype, device=x.device)
mask[:, :len_keep] = 0
# unshuffle to get the binary mask
mask = torch.gather(mask, dim=1, index=ids_restore)
ids_restore = ids_restore.unsqueeze(-1).expand(-1, -1, D)
return MaskInfo(
x_unmasked=x_unmasked, mask=mask, ids_restore=ids_restore, ids_keep=ids_keep
)
def gather_unmasked(x: torch.Tensor, mask_info: MaskInfo) -> torch.Tensor:
return torch.gather(
x,
dim=1,
index=mask_info.ids_keep,
)
def gather_unmasked_mask(x: torch.Tensor, mask_info: MaskInfo) -> torch.Tensor:
return torch.gather(
x,
dim=1,
index=mask_info.ids_keep[..., 0], # ignore the feature dimension
)
def get_alibi(
max_positions: int,
attention_heads: int,
dims: int = 1,
distance: str = "manhattan",
):
def get_slopes(n):
def get_slopes_power_of_2(n):
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
ratio = start
return [start * ratio**i for i in range(n)]
# In the paper, we only train models that have 2^a heads for some
# a. This function has some good properties that only occur when
# the input is a power of 2. To maintain that even when the number
# of heads is not a power of 2, we use this workaround.
if math.log2(n).is_integer():
return get_slopes_power_of_2(n)
else:
closest_power_of_2 = 2 ** math.floor(math.log2(n))
return (
get_slopes_power_of_2(closest_power_of_2)
+ get_slopes(2 * closest_power_of_2)[0::2][: n - closest_power_of_2]
)
maxpos = max_positions
attn_heads = attention_heads
slopes = torch.Tensor(get_slopes(attn_heads))
if dims == 1:
# prepare alibi position linear bias. Note that wav2vec2 is non
# autoregressive model so we want a symmetric mask with 0 on the
# diagonal and other wise linear decreasing valuees
pos_bias = (
torch.abs(
torch.arange(maxpos).unsqueeze(0) - torch.arange(maxpos).unsqueeze(1)
)
* -1
)
elif dims == 2:
if distance == "manhattan":
df = lambda x1, y1, x2, y2: abs(x1 - x2) + abs(y1 - y2)
elif distance == "euclidean":
df = lambda x1, y1, x2, y2: math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
n = math.sqrt(max_positions)
assert n.is_integer(), n
n = int(n)
pos_bias = torch.zeros((max_positions, max_positions))
for i in range(n):
for j in range(n):
for k in range(n):
for l in range(n):
new_x = i * n + j
new_y = k * n + l
pos_bias[new_x, new_y] = -df(i, j, k, l)
else:
raise Exception(f"unsupported number of alibi dims: {dims}")
alibi_bias = slopes.unsqueeze(1).unsqueeze(1) * pos_bias.unsqueeze(0).expand(
attn_heads, -1, -1
)
return alibi_bias
def get_alibi_bias(
alibi_biases,
batch_size,
time_steps,
heads,
dtype,
device,
dims=1,
distance="manhattan",
):
cache_key = f"{dims}_{heads}_{distance}"
buffered = alibi_biases.get(cache_key, None)
target_size = heads * batch_size
if (
buffered is None
or buffered.size(0) < target_size
or buffered.size(1) < time_steps
or buffered.dtype != dtype
or buffered.device != device
):
bt = max(time_steps, buffered.size(1) if buffered is not None else 0)
bn = max(target_size, buffered.size(0) if buffered is not None else 0) // heads
buffered = (
get_alibi(bt, heads, dims=dims, distance=distance)
.to(dtype=dtype, device=device)
.repeat(bn, 1, 1)
)
alibi_biases[cache_key] = buffered
b = buffered[:target_size, :time_steps, :time_steps]
b = b.view(batch_size, heads, time_steps, time_steps)
return b
def _learned_alibi_bias(
alibi_bias,
batch_size,
time_steps,
heads,
scale,
dtype,
device,
):
assert alibi_bias.size(1) == heads, alibi_bias.shape
assert alibi_bias.dtype == dtype, alibi_bias.dtype
assert alibi_bias.device == device, alibi_bias.device
if alibi_bias.size(-1) < time_steps:
psz = math.ceil((time_steps - alibi_bias.size(-1)) / 2)
alibi_bias = F.pad(alibi_bias, (psz, psz, psz, psz), mode="replicate")
alibi_bias = alibi_bias.expand(batch_size, -1, -1, -1) * scale
return alibi_bias[..., :time_steps, :time_steps]
def masked_alibi(alibi_bias, mask_info):
H = alibi_bias.size(1)
orig_bias = alibi_bias
index = mask_info.ids_keep.unsqueeze(1)[..., 0].unsqueeze(-1)
alibi_bias = torch.gather(
orig_bias,
dim=-2,
index=index.expand(-1, H, -1, mask_info.ids_restore.size(1)),
)
alibi_bias = torch.gather(
alibi_bias,
dim=-1,
index=index.transpose(-1, -2).expand(-1, H, alibi_bias.size(-2), -1),
)
return alibi_bias