Spaces:
Running
Running
#!/usr/bin/env python3 | |
# -*- encoding: utf-8 -*- | |
# Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
# MIT License (https://opensource.org/licenses/MIT) | |
import time | |
import torch | |
import torch.nn as nn | |
import torch.functional as F | |
import logging | |
from typing import Dict, Tuple | |
from contextlib import contextmanager | |
from distutils.version import LooseVersion | |
from funasr_detach.register import tables | |
from funasr_detach.models.ctc.ctc import CTC | |
from funasr_detach.utils import postprocess_utils | |
from funasr_detach.metrics.compute_acc import th_accuracy | |
from funasr_detach.utils.datadir_writer import DatadirWriter | |
from funasr_detach.models.paraformer.model import Paraformer | |
from funasr_detach.models.paraformer.search import Hypothesis | |
from funasr_detach.models.paraformer.cif_predictor import mae_loss | |
from funasr_detach.train_utils.device_funcs import force_gatherable | |
from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss | |
from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask, pad_list | |
from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank | |
from funasr_detach.models.scama.utils import sequence_mask | |
if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): | |
from torch.cuda.amp import autocast | |
else: | |
# Nothing to do if torch<1.6.0 | |
def autocast(enabled=True): | |
yield | |
class SCAMA(nn.Module): | |
""" | |
Author: Shiliang Zhang, Zhifu Gao, Haoneng Luo, Ming Lei, Jie Gao, Zhijie Yan, Lei Xie | |
SCAMA: Streaming chunk-aware multihead attention for online end-to-end speech recognition | |
https://arxiv.org/abs/2006.01712 | |
""" | |
def __init__( | |
self, | |
specaug: str = None, | |
specaug_conf: dict = None, | |
normalize: str = None, | |
normalize_conf: dict = None, | |
encoder: str = None, | |
encoder_conf: dict = None, | |
decoder: str = None, | |
decoder_conf: dict = None, | |
ctc: str = None, | |
ctc_conf: dict = None, | |
ctc_weight: float = 0.5, | |
predictor: str = None, | |
predictor_conf: dict = None, | |
predictor_bias: int = 0, | |
predictor_weight: float = 0.0, | |
input_size: int = 80, | |
vocab_size: int = -1, | |
ignore_id: int = -1, | |
blank_id: int = 0, | |
sos: int = 1, | |
eos: int = 2, | |
lsm_weight: float = 0.0, | |
length_normalized_loss: bool = False, | |
share_embedding: bool = False, | |
**kwargs, | |
): | |
super().__init__() | |
if specaug is not None: | |
specaug_class = tables.specaug_classes.get(specaug) | |
specaug = specaug_class(**specaug_conf) | |
if normalize is not None: | |
normalize_class = tables.normalize_classes.get(normalize) | |
normalize = normalize_class(**normalize_conf) | |
encoder_class = tables.encoder_classes.get(encoder) | |
encoder = encoder_class(input_size=input_size, **encoder_conf) | |
encoder_output_size = encoder.output_size() | |
decoder_class = tables.decoder_classes.get(decoder) | |
decoder = decoder_class( | |
vocab_size=vocab_size, | |
encoder_output_size=encoder_output_size, | |
**decoder_conf, | |
) | |
if ctc_weight > 0.0: | |
if ctc_conf is None: | |
ctc_conf = {} | |
ctc = CTC( | |
odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf | |
) | |
predictor_class = tables.predictor_classes.get(predictor) | |
predictor = predictor_class(**predictor_conf) | |
# note that eos is the same as sos (equivalent ID) | |
self.blank_id = blank_id | |
self.sos = sos if sos is not None else vocab_size - 1 | |
self.eos = eos if eos is not None else vocab_size - 1 | |
self.vocab_size = vocab_size | |
self.ignore_id = ignore_id | |
self.ctc_weight = ctc_weight | |
self.specaug = specaug | |
self.normalize = normalize | |
self.encoder = encoder | |
if ctc_weight == 1.0: | |
self.decoder = None | |
else: | |
self.decoder = decoder | |
self.criterion_att = LabelSmoothingLoss( | |
size=vocab_size, | |
padding_idx=ignore_id, | |
smoothing=lsm_weight, | |
normalize_length=length_normalized_loss, | |
) | |
if ctc_weight == 0.0: | |
self.ctc = None | |
else: | |
self.ctc = ctc | |
self.predictor = predictor | |
self.predictor_weight = predictor_weight | |
self.predictor_bias = predictor_bias | |
self.criterion_pre = mae_loss(normalize_length=length_normalized_loss) | |
self.share_embedding = share_embedding | |
if self.share_embedding: | |
self.decoder.embed = None | |
self.length_normalized_loss = length_normalized_loss | |
self.beam_search = None | |
self.error_calculator = None | |
if self.encoder.overlap_chunk_cls is not None: | |
from funasr_detach.models.scama.chunk_utilis import ( | |
build_scama_mask_for_cross_attention_decoder, | |
) | |
self.build_scama_mask_for_cross_attention_decoder_fn = ( | |
build_scama_mask_for_cross_attention_decoder | |
) | |
self.decoder_attention_chunk_type = kwargs.get( | |
"decoder_attention_chunk_type", "chunk" | |
) | |
def forward( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
text: torch.Tensor, | |
text_lengths: torch.Tensor, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: | |
"""Encoder + Decoder + Calc loss | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
text: (Batch, Length) | |
text_lengths: (Batch,) | |
""" | |
decoding_ind = kwargs.get("decoding_ind") | |
if len(text_lengths.size()) > 1: | |
text_lengths = text_lengths[:, 0] | |
if len(speech_lengths.size()) > 1: | |
speech_lengths = speech_lengths[:, 0] | |
batch_size = speech.shape[0] | |
# Encoder | |
ind = self.encoder.overlap_chunk_cls.random_choice(self.training, decoding_ind) | |
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths, ind=ind) | |
loss_ctc, cer_ctc = None, None | |
loss_pre = None | |
stats = dict() | |
# decoder: CTC branch | |
if self.ctc_weight > 0.0: | |
encoder_out_ctc, encoder_out_lens_ctc = ( | |
self.encoder.overlap_chunk_cls.remove_chunk( | |
encoder_out, encoder_out_lens, chunk_outs=None | |
) | |
) | |
loss_ctc, cer_ctc = self._calc_ctc_loss( | |
encoder_out_ctc, encoder_out_lens_ctc, text, text_lengths | |
) | |
# Collect CTC branch stats | |
stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None | |
stats["cer_ctc"] = cer_ctc | |
# decoder: Attention decoder branch | |
loss_att, acc_att, cer_att, wer_att, loss_pre = self._calc_att_predictor_loss( | |
encoder_out, encoder_out_lens, text, text_lengths | |
) | |
# 3. CTC-Att loss definition | |
if self.ctc_weight == 0.0: | |
loss = loss_att + loss_pre * self.predictor_weight | |
else: | |
loss = ( | |
self.ctc_weight * loss_ctc | |
+ (1 - self.ctc_weight) * loss_att | |
+ loss_pre * self.predictor_weight | |
) | |
# Collect Attn branch stats | |
stats["loss_att"] = loss_att.detach() if loss_att is not None else None | |
stats["acc"] = acc_att | |
stats["cer"] = cer_att | |
stats["wer"] = wer_att | |
stats["loss_pre"] = loss_pre.detach().cpu() if loss_pre is not None else None | |
stats["loss"] = torch.clone(loss.detach()) | |
# force_gatherable: to-device and to-tensor if scalar for DataParallel | |
if self.length_normalized_loss: | |
batch_size = (text_lengths + self.predictor_bias).sum() | |
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) | |
return loss, stats, weight | |
def encode( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
**kwargs, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Encoder. Note that this method is used by asr_inference.py | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
ind: int | |
""" | |
with autocast(False): | |
# Data augmentation | |
if self.specaug is not None and self.training: | |
speech, speech_lengths = self.specaug(speech, speech_lengths) | |
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN | |
if self.normalize is not None: | |
speech, speech_lengths = self.normalize(speech, speech_lengths) | |
# Forward encoder | |
encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths) | |
if isinstance(encoder_out, tuple): | |
encoder_out = encoder_out[0] | |
return encoder_out, encoder_out_lens | |
def encode_chunk( | |
self, | |
speech: torch.Tensor, | |
speech_lengths: torch.Tensor, | |
cache: dict = None, | |
**kwargs, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Frontend + Encoder. Note that this method is used by asr_inference.py | |
Args: | |
speech: (Batch, Length, ...) | |
speech_lengths: (Batch, ) | |
ind: int | |
""" | |
with autocast(False): | |
# Data augmentation | |
if self.specaug is not None and self.training: | |
speech, speech_lengths = self.specaug(speech, speech_lengths) | |
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN | |
if self.normalize is not None: | |
speech, speech_lengths = self.normalize(speech, speech_lengths) | |
# Forward encoder | |
encoder_out, encoder_out_lens, _ = self.encoder.forward_chunk( | |
speech, speech_lengths, cache=cache["encoder"] | |
) | |
if isinstance(encoder_out, tuple): | |
encoder_out = encoder_out[0] | |
return encoder_out, torch.tensor([encoder_out.size(1)]) | |
def calc_predictor_chunk(self, encoder_out, encoder_out_lens, cache=None, **kwargs): | |
is_final = kwargs.get("is_final", False) | |
return self.predictor.forward_chunk( | |
encoder_out, cache["encoder"], is_final=is_final | |
) | |
def _calc_att_predictor_loss( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
ys_pad: torch.Tensor, | |
ys_pad_lens: torch.Tensor, | |
): | |
ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) | |
ys_in_lens = ys_pad_lens + 1 | |
encoder_out_mask = sequence_mask( | |
encoder_out_lens, | |
maxlen=encoder_out.size(1), | |
dtype=encoder_out.dtype, | |
device=encoder_out.device, | |
)[:, None, :] | |
mask_chunk_predictor = None | |
if self.encoder.overlap_chunk_cls is not None: | |
mask_chunk_predictor = ( | |
self.encoder.overlap_chunk_cls.get_mask_chunk_predictor( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
) | |
mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
encoder_out = encoder_out * mask_shfit_chunk | |
pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor( | |
encoder_out, | |
ys_out_pad, | |
encoder_out_mask, | |
ignore_id=self.ignore_id, | |
mask_chunk_predictor=mask_chunk_predictor, | |
target_label_length=ys_in_lens, | |
) | |
predictor_alignments, predictor_alignments_len = ( | |
self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens) | |
) | |
encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur | |
attention_chunk_center_bias = 0 | |
attention_chunk_size = encoder_chunk_size | |
decoder_att_look_back_factor = ( | |
self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur | |
) | |
mask_shift_att_chunk_decoder = ( | |
self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
) | |
scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn( | |
predictor_alignments=predictor_alignments, | |
encoder_sequence_length=encoder_out_lens, | |
chunk_size=1, | |
encoder_chunk_size=encoder_chunk_size, | |
attention_chunk_center_bias=attention_chunk_center_bias, | |
attention_chunk_size=attention_chunk_size, | |
attention_chunk_type=self.decoder_attention_chunk_type, | |
step=None, | |
predictor_mask_chunk_hopping=mask_chunk_predictor, | |
decoder_att_look_back_factor=decoder_att_look_back_factor, | |
mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, | |
target_length=ys_in_lens, | |
is_training=self.training, | |
) | |
# try: | |
# 1. Forward decoder | |
decoder_out, _ = self.decoder( | |
encoder_out, | |
encoder_out_lens, | |
ys_in_pad, | |
ys_in_lens, | |
chunk_mask=scama_mask, | |
pre_acoustic_embeds=pre_acoustic_embeds, | |
) | |
# 2. Compute attention loss | |
loss_att = self.criterion_att(decoder_out, ys_out_pad) | |
acc_att = th_accuracy( | |
decoder_out.view(-1, self.vocab_size), | |
ys_out_pad, | |
ignore_label=self.ignore_id, | |
) | |
# predictor loss | |
loss_pre = self.criterion_pre( | |
ys_in_lens.type_as(pre_token_length), pre_token_length | |
) | |
# Compute cer/wer using attention-decoder | |
if self.training or self.error_calculator is None: | |
cer_att, wer_att = None, None | |
else: | |
ys_hat = decoder_out.argmax(dim=-1) | |
cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) | |
return loss_att, acc_att, cer_att, wer_att, loss_pre | |
def calc_predictor_mask( | |
self, | |
encoder_out: torch.Tensor, | |
encoder_out_lens: torch.Tensor, | |
ys_pad: torch.Tensor = None, | |
ys_pad_lens: torch.Tensor = None, | |
): | |
# ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) | |
# ys_in_lens = ys_pad_lens + 1 | |
ys_out_pad, ys_in_lens = None, None | |
encoder_out_mask = sequence_mask( | |
encoder_out_lens, | |
maxlen=encoder_out.size(1), | |
dtype=encoder_out.dtype, | |
device=encoder_out.device, | |
)[:, None, :] | |
mask_chunk_predictor = None | |
mask_chunk_predictor = self.encoder.overlap_chunk_cls.get_mask_chunk_predictor( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
mask_shfit_chunk = self.encoder.overlap_chunk_cls.get_mask_shfit_chunk( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
encoder_out = encoder_out * mask_shfit_chunk | |
pre_acoustic_embeds, pre_token_length, pre_alphas, _ = self.predictor( | |
encoder_out, | |
ys_out_pad, | |
encoder_out_mask, | |
ignore_id=self.ignore_id, | |
mask_chunk_predictor=mask_chunk_predictor, | |
target_label_length=ys_in_lens, | |
) | |
predictor_alignments, predictor_alignments_len = ( | |
self.predictor.gen_frame_alignments(pre_alphas, encoder_out_lens) | |
) | |
encoder_chunk_size = self.encoder.overlap_chunk_cls.chunk_size_pad_shift_cur | |
attention_chunk_center_bias = 0 | |
attention_chunk_size = encoder_chunk_size | |
decoder_att_look_back_factor = ( | |
self.encoder.overlap_chunk_cls.decoder_att_look_back_factor_cur | |
) | |
mask_shift_att_chunk_decoder = ( | |
self.encoder.overlap_chunk_cls.get_mask_shift_att_chunk_decoder( | |
None, device=encoder_out.device, batch_size=encoder_out.size(0) | |
) | |
) | |
scama_mask = self.build_scama_mask_for_cross_attention_decoder_fn( | |
predictor_alignments=predictor_alignments, | |
encoder_sequence_length=encoder_out_lens, | |
chunk_size=1, | |
encoder_chunk_size=encoder_chunk_size, | |
attention_chunk_center_bias=attention_chunk_center_bias, | |
attention_chunk_size=attention_chunk_size, | |
attention_chunk_type=self.decoder_attention_chunk_type, | |
step=None, | |
predictor_mask_chunk_hopping=mask_chunk_predictor, | |
decoder_att_look_back_factor=decoder_att_look_back_factor, | |
mask_shift_att_chunk_decoder=mask_shift_att_chunk_decoder, | |
target_length=ys_in_lens, | |
is_training=self.training, | |
) | |
return ( | |
pre_acoustic_embeds, | |
pre_token_length, | |
predictor_alignments, | |
predictor_alignments_len, | |
scama_mask, | |
) | |
def init_beam_search( | |
self, | |
**kwargs, | |
): | |
from funasr_detach.models.scama.beam_search import BeamSearchScamaStreaming | |
from funasr_detach.models.transformer.scorers.ctc import CTCPrefixScorer | |
from funasr_detach.models.transformer.scorers.length_bonus import LengthBonus | |
# 1. Build ASR model | |
scorers = {} | |
if self.ctc != None: | |
ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos) | |
scorers.update(ctc=ctc) | |
token_list = kwargs.get("token_list") | |
scorers.update( | |
decoder=self.decoder, | |
length_bonus=LengthBonus(len(token_list)), | |
) | |
# 3. Build ngram model | |
# ngram is not supported now | |
ngram = None | |
scorers["ngram"] = ngram | |
weights = dict( | |
decoder=1.0 - kwargs.get("decoding_ctc_weight", 0.0), | |
ctc=kwargs.get("decoding_ctc_weight", 0.0), | |
lm=kwargs.get("lm_weight", 0.0), | |
ngram=kwargs.get("ngram_weight", 0.0), | |
length_bonus=kwargs.get("penalty", 0.0), | |
) | |
beam_search = BeamSearchScamaStreaming( | |
beam_size=kwargs.get("beam_size", 2), | |
weights=weights, | |
scorers=scorers, | |
sos=self.sos, | |
eos=self.eos, | |
vocab_size=len(token_list), | |
token_list=token_list, | |
pre_beam_score_key=None if self.ctc_weight == 1.0 else "full", | |
) | |
# beam_search.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() | |
# for scorer in scorers.values(): | |
# if isinstance(scorer, torch.nn.Module): | |
# scorer.to(device=kwargs.get("device", "cpu"), dtype=getattr(torch, kwargs.get("dtype", "float32"))).eval() | |
self.beam_search = beam_search | |
def generate_chunk( | |
self, | |
speech, | |
speech_lengths=None, | |
key: list = None, | |
tokenizer=None, | |
frontend=None, | |
**kwargs, | |
): | |
cache = kwargs.get("cache", {}) | |
speech = speech.to(device=kwargs["device"]) | |
speech_lengths = speech_lengths.to(device=kwargs["device"]) | |
# Encoder | |
encoder_out, encoder_out_lens = self.encode_chunk( | |
speech, speech_lengths, cache=cache, is_final=kwargs.get("is_final", False) | |
) | |
if isinstance(encoder_out, tuple): | |
encoder_out = encoder_out[0] | |
if "running_hyps" not in cache: | |
running_hyps = self.beam_search.init_hyp(encoder_out) | |
cache["running_hyps"] = running_hyps | |
# predictor | |
predictor_outs = self.calc_predictor_chunk( | |
encoder_out, | |
encoder_out_lens, | |
cache=cache, | |
is_final=kwargs.get("is_final", False), | |
) | |
pre_acoustic_embeds, pre_token_length, alphas, pre_peak_index = ( | |
predictor_outs[0], | |
predictor_outs[1], | |
predictor_outs[2], | |
predictor_outs[3], | |
) | |
pre_token_length = pre_token_length.round().long() | |
if torch.max(pre_token_length) < 1: | |
return [] | |
maxlen = minlen = pre_token_length | |
if kwargs.get("is_final", False): | |
maxlen += kwargs.get("token_num_relax", 5) | |
minlen = max(0, minlen - kwargs.get("token_num_relax", 5)) | |
# c. Passed the encoder result and the beam search | |
nbest_hyps = self.beam_search( | |
x=encoder_out[0], | |
scama_mask=None, | |
pre_acoustic_embeds=pre_acoustic_embeds, | |
maxlen=int(maxlen), | |
minlen=int(minlen), | |
cache=cache, | |
) | |
cache["running_hyps"] = nbest_hyps | |
nbest_hyps = nbest_hyps[: self.nbest] | |
results = [] | |
for hyp in nbest_hyps: | |
# assert isinstance(hyp, (Hypothesis)), type(hyp) | |
# remove sos/eos and get results | |
last_pos = -1 | |
if isinstance(hyp.yseq, list): | |
token_int = hyp.yseq[1:last_pos] | |
else: | |
token_int = hyp.yseq[1:last_pos].tolist() | |
# remove blank symbol id, which is assumed to be 0 | |
token_int = list( | |
filter( | |
lambda x: x != self.eos | |
and x != self.sos | |
and x != self.blank_id, | |
token_int, | |
) | |
) | |
# Change integer-ids to tokens | |
token = tokenizer.ids2tokens(token_int) | |
# text = tokenizer.tokens2text(token) | |
result_i = token | |
results.extend(result_i) | |
return results | |
def init_cache(self, cache: dict = {}, **kwargs): | |
device = kwargs.get("device", "cuda") | |
chunk_size = kwargs.get("chunk_size", [0, 10, 5]) | |
encoder_chunk_look_back = kwargs.get("encoder_chunk_look_back", 0) | |
decoder_chunk_look_back = kwargs.get("decoder_chunk_look_back", 0) | |
batch_size = 1 | |
enc_output_size = kwargs["encoder_conf"]["output_size"] | |
feats_dims = ( | |
kwargs["frontend_conf"]["n_mels"] * kwargs["frontend_conf"]["lfr_m"] | |
) | |
cache_encoder = { | |
"start_idx": 0, | |
"cif_hidden": torch.zeros((batch_size, 1, enc_output_size)).to( | |
device=device | |
), | |
"cif_alphas": torch.zeros((batch_size, 1)).to(device=device), | |
"chunk_size": chunk_size, | |
"encoder_chunk_look_back": encoder_chunk_look_back, | |
"last_chunk": False, | |
"opt": None, | |
"feats": torch.zeros( | |
(batch_size, chunk_size[0] + chunk_size[2], feats_dims) | |
).to(device=device), | |
"tail_chunk": False, | |
} | |
cache["encoder"] = cache_encoder | |
cache_decoder = { | |
"decode_fsmn": None, | |
"decoder_chunk_look_back": decoder_chunk_look_back, | |
"opt": None, | |
"chunk_size": chunk_size, | |
} | |
cache["decoder"] = cache_decoder | |
cache["frontend"] = {} | |
cache["prev_samples"] = torch.empty(0).to(device=device) | |
return cache | |
def inference( | |
self, | |
data_in, | |
data_lengths=None, | |
key: list = None, | |
tokenizer=None, | |
frontend=None, | |
cache: dict = {}, | |
**kwargs, | |
): | |
# init beamsearch | |
is_use_ctc = ( | |
kwargs.get("decoding_ctc_weight", 0.0) > 0.00001 and self.ctc != None | |
) | |
is_use_lm = ( | |
kwargs.get("lm_weight", 0.0) > 0.00001 | |
and kwargs.get("lm_file", None) is not None | |
) | |
if self.beam_search is None: | |
logging.info("enable beam_search") | |
self.init_beam_search(**kwargs) | |
self.nbest = kwargs.get("nbest", 1) | |
if len(cache) == 0: | |
self.init_cache(cache, **kwargs) | |
meta_data = {} | |
chunk_size = kwargs.get("chunk_size", [0, 10, 5]) | |
chunk_stride_samples = int(chunk_size[1] * 960) # 600ms | |
time1 = time.perf_counter() | |
cfg = {"is_final": kwargs.get("is_final", False)} | |
audio_sample_list = load_audio_text_image_video( | |
data_in, | |
fs=frontend.fs, | |
audio_fs=kwargs.get("fs", 16000), | |
data_type=kwargs.get("data_type", "sound"), | |
tokenizer=tokenizer, | |
cache=cfg, | |
) | |
_is_final = cfg["is_final"] # if data_in is a file or url, set is_final=True | |
time2 = time.perf_counter() | |
meta_data["load_data"] = f"{time2 - time1:0.3f}" | |
assert len(audio_sample_list) == 1, "batch_size must be set 1" | |
audio_sample = torch.cat((cache["prev_samples"], audio_sample_list[0])) | |
n = int(len(audio_sample) // chunk_stride_samples + int(_is_final)) | |
m = int(len(audio_sample) % chunk_stride_samples * (1 - int(_is_final))) | |
tokens = [] | |
for i in range(n): | |
kwargs["is_final"] = _is_final and i == n - 1 | |
audio_sample_i = audio_sample[ | |
i * chunk_stride_samples : (i + 1) * chunk_stride_samples | |
] | |
# extract fbank feats | |
speech, speech_lengths = extract_fbank( | |
[audio_sample_i], | |
data_type=kwargs.get("data_type", "sound"), | |
frontend=frontend, | |
cache=cache["frontend"], | |
is_final=kwargs["is_final"], | |
) | |
time3 = time.perf_counter() | |
meta_data["extract_feat"] = f"{time3 - time2:0.3f}" | |
meta_data["batch_data_time"] = ( | |
speech_lengths.sum().item() | |
* frontend.frame_shift | |
* frontend.lfr_n | |
/ 1000 | |
) | |
tokens_i = self.generate_chunk( | |
speech, | |
speech_lengths, | |
key=key, | |
tokenizer=tokenizer, | |
cache=cache, | |
frontend=frontend, | |
**kwargs, | |
) | |
tokens.extend(tokens_i) | |
text_postprocessed, _ = postprocess_utils.sentence_postprocess(tokens) | |
result_i = {"key": key[0], "text": text_postprocessed} | |
result = [result_i] | |
cache["prev_samples"] = audio_sample[:-m] | |
if _is_final: | |
self.init_cache(cache, **kwargs) | |
if kwargs.get("output_dir"): | |
writer = DatadirWriter(kwargs.get("output_dir")) | |
ibest_writer = writer[f"{1}best_recog"] | |
ibest_writer["token"][key[0]] = " ".join(tokens) | |
ibest_writer["text"][key[0]] = text_postprocessed | |
return result, meta_data | |