Spaces:
Running
Running
# Copyright 2019 Shigeki Karita | |
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
"""Decoder definition.""" | |
from typing import Any | |
from typing import List | |
from typing import Sequence | |
from typing import Tuple | |
import torch | |
from torch import nn | |
from funasr_detach.models.transformer.attention import MultiHeadedAttention | |
from funasr_detach.models.transformer.utils.dynamic_conv import DynamicConvolution | |
from funasr_detach.models.transformer.utils.dynamic_conv2d import DynamicConvolution2D | |
from funasr_detach.models.transformer.embedding import PositionalEncoding | |
from funasr_detach.models.transformer.layer_norm import LayerNorm | |
from funasr_detach.models.transformer.utils.lightconv import LightweightConvolution | |
from funasr_detach.models.transformer.utils.lightconv2d import LightweightConvolution2D | |
from funasr_detach.models.transformer.utils.mask import subsequent_mask | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask | |
from funasr_detach.models.transformer.positionwise_feed_forward import ( | |
PositionwiseFeedForward, # noqa: H301 | |
) | |
from funasr_detach.models.transformer.utils.repeat import repeat | |
from funasr_detach.models.transformer.scorers.scorer_interface import ( | |
BatchScorerInterface, | |
) | |
from funasr_detach.register import tables | |
class DecoderLayer(nn.Module): | |
"""Single decoder layer module. | |
Args: | |
size (int): Input dimension. | |
self_attn (torch.nn.Module): Self-attention module instance. | |
`MultiHeadedAttention` instance can be used as the argument. | |
src_attn (torch.nn.Module): Self-attention module instance. | |
`MultiHeadedAttention` instance can be used as the argument. | |
feed_forward (torch.nn.Module): Feed-forward module instance. | |
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance | |
can be used as the argument. | |
dropout_rate (float): Dropout rate. | |
normalize_before (bool): Whether to use layer_norm before the first block. | |
concat_after (bool): Whether to concat attention layer's input and output. | |
if True, additional linear will be applied. | |
i.e. x -> x + linear(concat(x, att(x))) | |
if False, no additional linear will be applied. i.e. x -> x + att(x) | |
""" | |
def __init__( | |
self, | |
size, | |
self_attn, | |
src_attn, | |
feed_forward, | |
dropout_rate, | |
normalize_before=True, | |
concat_after=False, | |
): | |
"""Construct an DecoderLayer object.""" | |
super(DecoderLayer, self).__init__() | |
self.size = size | |
self.self_attn = self_attn | |
self.src_attn = src_attn | |
self.feed_forward = feed_forward | |
self.norm1 = LayerNorm(size) | |
self.norm2 = LayerNorm(size) | |
self.norm3 = LayerNorm(size) | |
self.dropout = nn.Dropout(dropout_rate) | |
self.normalize_before = normalize_before | |
self.concat_after = concat_after | |
if self.concat_after: | |
self.concat_linear1 = nn.Linear(size + size, size) | |
self.concat_linear2 = nn.Linear(size + size, size) | |
def forward(self, tgt, tgt_mask, memory, memory_mask, cache=None): | |
"""Compute decoded features. | |
Args: | |
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size). | |
tgt_mask (torch.Tensor): Mask for input tensor (#batch, maxlen_out). | |
memory (torch.Tensor): Encoded memory, float32 (#batch, maxlen_in, size). | |
memory_mask (torch.Tensor): Encoded memory mask (#batch, maxlen_in). | |
cache (List[torch.Tensor]): List of cached tensors. | |
Each tensor shape should be (#batch, maxlen_out - 1, size). | |
Returns: | |
torch.Tensor: Output tensor(#batch, maxlen_out, size). | |
torch.Tensor: Mask for output tensor (#batch, maxlen_out). | |
torch.Tensor: Encoded memory (#batch, maxlen_in, size). | |
torch.Tensor: Encoded memory mask (#batch, maxlen_in). | |
""" | |
residual = tgt | |
if self.normalize_before: | |
tgt = self.norm1(tgt) | |
if cache is None: | |
tgt_q = tgt | |
tgt_q_mask = tgt_mask | |
else: | |
# compute only the last frame query keeping dim: max_time_out -> 1 | |
assert cache.shape == ( | |
tgt.shape[0], | |
tgt.shape[1] - 1, | |
self.size, | |
), f"{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}" | |
tgt_q = tgt[:, -1:, :] | |
residual = residual[:, -1:, :] | |
tgt_q_mask = None | |
if tgt_mask is not None: | |
tgt_q_mask = tgt_mask[:, -1:, :] | |
if self.concat_after: | |
tgt_concat = torch.cat( | |
(tgt_q, self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)), dim=-1 | |
) | |
x = residual + self.concat_linear1(tgt_concat) | |
else: | |
x = residual + self.dropout(self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)) | |
if not self.normalize_before: | |
x = self.norm1(x) | |
residual = x | |
if self.normalize_before: | |
x = self.norm2(x) | |
if self.concat_after: | |
x_concat = torch.cat( | |
(x, self.src_attn(x, memory, memory, memory_mask)), dim=-1 | |
) | |
x = residual + self.concat_linear2(x_concat) | |
else: | |
x = residual + self.dropout(self.src_attn(x, memory, memory, memory_mask)) | |
if not self.normalize_before: | |
x = self.norm2(x) | |
residual = x | |
if self.normalize_before: | |
x = self.norm3(x) | |
x = residual + self.dropout(self.feed_forward(x)) | |
if not self.normalize_before: | |
x = self.norm3(x) | |
if cache is not None: | |
x = torch.cat([cache, x], dim=1) | |
return x, tgt_mask, memory, memory_mask | |
class BaseTransformerDecoder(nn.Module, BatchScorerInterface): | |
"""Base class of Transfomer decoder module. | |
Args: | |
vocab_size: output dim | |
encoder_output_size: dimension of attention | |
attention_heads: the number of heads of multi head attention | |
linear_units: the number of units of position-wise feed forward | |
num_blocks: the number of decoder blocks | |
dropout_rate: dropout rate | |
self_attention_dropout_rate: dropout rate for attention | |
input_layer: input layer type | |
use_output_layer: whether to use output layer | |
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding | |
normalize_before: whether to use layer_norm before the first block | |
concat_after: whether to concat attention layer's input and output | |
if True, additional linear will be applied. | |
i.e. x -> x + linear(concat(x, att(x))) | |
if False, no additional linear will be applied. | |
i.e. x -> x + att(x) | |
""" | |
def __init__( | |
self, | |
vocab_size: int, | |
encoder_output_size: int, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
input_layer: str = "embed", | |
use_output_layer: bool = True, | |
pos_enc_class=PositionalEncoding, | |
normalize_before: bool = True, | |
): | |
super().__init__() | |
attention_dim = encoder_output_size | |
if input_layer == "embed": | |
self.embed = torch.nn.Sequential( | |
torch.nn.Embedding(vocab_size, attention_dim), | |
pos_enc_class(attention_dim, positional_dropout_rate), | |
) | |
elif input_layer == "linear": | |
self.embed = torch.nn.Sequential( | |
torch.nn.Linear(vocab_size, attention_dim), | |
torch.nn.LayerNorm(attention_dim), | |
torch.nn.Dropout(dropout_rate), | |
torch.nn.ReLU(), | |
pos_enc_class(attention_dim, positional_dropout_rate), | |
) | |
else: | |
raise ValueError(f"only 'embed' or 'linear' is supported: {input_layer}") | |
self.normalize_before = normalize_before | |
if self.normalize_before: | |
self.after_norm = LayerNorm(attention_dim) | |
if use_output_layer: | |
self.output_layer = torch.nn.Linear(attention_dim, vocab_size) | |
else: | |
self.output_layer = None | |
# Must set by the inheritance | |
self.decoders = None | |
def forward( | |
self, | |
hs_pad: torch.Tensor, | |
hlens: torch.Tensor, | |
ys_in_pad: torch.Tensor, | |
ys_in_lens: torch.Tensor, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Forward decoder. | |
Args: | |
hs_pad: encoded memory, float32 (batch, maxlen_in, feat) | |
hlens: (batch) | |
ys_in_pad: | |
input token ids, int64 (batch, maxlen_out) | |
if input_layer == "embed" | |
input tensor (batch, maxlen_out, #mels) in the other cases | |
ys_in_lens: (batch) | |
Returns: | |
(tuple): tuple containing: | |
x: decoded token score before softmax (batch, maxlen_out, token) | |
if use_output_layer is True, | |
olens: (batch, ) | |
""" | |
tgt = ys_in_pad | |
# tgt_mask: (B, 1, L) | |
tgt_mask = (~make_pad_mask(ys_in_lens)[:, None, :]).to(tgt.device) | |
# m: (1, L, L) | |
m = subsequent_mask(tgt_mask.size(-1), device=tgt_mask.device).unsqueeze(0) | |
# tgt_mask: (B, L, L) | |
tgt_mask = tgt_mask & m | |
memory = hs_pad | |
memory_mask = (~make_pad_mask(hlens, maxlen=memory.size(1)))[:, None, :].to( | |
memory.device | |
) | |
# Padding for Longformer | |
if memory_mask.shape[-1] != memory.shape[1]: | |
padlen = memory.shape[1] - memory_mask.shape[-1] | |
memory_mask = torch.nn.functional.pad( | |
memory_mask, (0, padlen), "constant", False | |
) | |
x = self.embed(tgt) | |
x, tgt_mask, memory, memory_mask = self.decoders( | |
x, tgt_mask, memory, memory_mask | |
) | |
if self.normalize_before: | |
x = self.after_norm(x) | |
if self.output_layer is not None: | |
x = self.output_layer(x) | |
olens = tgt_mask.sum(1) | |
return x, olens | |
def forward_one_step( | |
self, | |
tgt: torch.Tensor, | |
tgt_mask: torch.Tensor, | |
memory: torch.Tensor, | |
cache: List[torch.Tensor] = None, | |
) -> Tuple[torch.Tensor, List[torch.Tensor]]: | |
"""Forward one step. | |
Args: | |
tgt: input token ids, int64 (batch, maxlen_out) | |
tgt_mask: input token mask, (batch, maxlen_out) | |
dtype=torch.uint8 in PyTorch 1.2- | |
dtype=torch.bool in PyTorch 1.2+ (include 1.2) | |
memory: encoded memory, float32 (batch, maxlen_in, feat) | |
cache: cached output list of (batch, max_time_out-1, size) | |
Returns: | |
y, cache: NN output value and cache per `self.decoders`. | |
y.shape` is (batch, maxlen_out, token) | |
""" | |
x = self.embed(tgt) | |
if cache is None: | |
cache = [None] * len(self.decoders) | |
new_cache = [] | |
for c, decoder in zip(cache, self.decoders): | |
x, tgt_mask, memory, memory_mask = decoder( | |
x, tgt_mask, memory, None, cache=c | |
) | |
new_cache.append(x) | |
if self.normalize_before: | |
y = self.after_norm(x[:, -1]) | |
else: | |
y = x[:, -1] | |
if self.output_layer is not None: | |
y = torch.log_softmax(self.output_layer(y), dim=-1) | |
return y, new_cache | |
def score(self, ys, state, x): | |
"""Score.""" | |
ys_mask = subsequent_mask(len(ys), device=x.device).unsqueeze(0) | |
logp, state = self.forward_one_step( | |
ys.unsqueeze(0), ys_mask, x.unsqueeze(0), cache=state | |
) | |
return logp.squeeze(0), state | |
def batch_score( | |
self, ys: torch.Tensor, states: List[Any], xs: torch.Tensor | |
) -> Tuple[torch.Tensor, List[Any]]: | |
"""Score new token batch. | |
Args: | |
ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen). | |
states (List[Any]): Scorer states for prefix tokens. | |
xs (torch.Tensor): | |
The encoder feature that generates ys (n_batch, xlen, n_feat). | |
Returns: | |
tuple[torch.Tensor, List[Any]]: Tuple of | |
batchfied scores for next token with shape of `(n_batch, n_vocab)` | |
and next state list for ys. | |
""" | |
# merge states | |
n_batch = len(ys) | |
n_layers = len(self.decoders) | |
if states[0] is None: | |
batch_state = None | |
else: | |
# transpose state of [batch, layer] into [layer, batch] | |
batch_state = [ | |
torch.stack([states[b][i] for b in range(n_batch)]) | |
for i in range(n_layers) | |
] | |
# batch decoding | |
ys_mask = subsequent_mask(ys.size(-1), device=xs.device).unsqueeze(0) | |
logp, states = self.forward_one_step(ys, ys_mask, xs, cache=batch_state) | |
# transpose state of [layer, batch] into [batch, layer] | |
state_list = [[states[i][b] for i in range(n_layers)] for b in range(n_batch)] | |
return logp, state_list | |
class TransformerDecoder(BaseTransformerDecoder): | |
def __init__( | |
self, | |
vocab_size: int, | |
encoder_output_size: int, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
self_attention_dropout_rate: float = 0.0, | |
src_attention_dropout_rate: float = 0.0, | |
input_layer: str = "embed", | |
use_output_layer: bool = True, | |
pos_enc_class=PositionalEncoding, | |
normalize_before: bool = True, | |
concat_after: bool = False, | |
): | |
super().__init__( | |
vocab_size=vocab_size, | |
encoder_output_size=encoder_output_size, | |
dropout_rate=dropout_rate, | |
positional_dropout_rate=positional_dropout_rate, | |
input_layer=input_layer, | |
use_output_layer=use_output_layer, | |
pos_enc_class=pos_enc_class, | |
normalize_before=normalize_before, | |
) | |
attention_dim = encoder_output_size | |
self.decoders = repeat( | |
num_blocks, | |
lambda lnum: DecoderLayer( | |
attention_dim, | |
MultiHeadedAttention( | |
attention_heads, attention_dim, self_attention_dropout_rate | |
), | |
MultiHeadedAttention( | |
attention_heads, attention_dim, src_attention_dropout_rate | |
), | |
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate), | |
dropout_rate, | |
normalize_before, | |
concat_after, | |
), | |
) | |
class LightweightConvolutionTransformerDecoder(BaseTransformerDecoder): | |
def __init__( | |
self, | |
vocab_size: int, | |
encoder_output_size: int, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
self_attention_dropout_rate: float = 0.0, | |
src_attention_dropout_rate: float = 0.0, | |
input_layer: str = "embed", | |
use_output_layer: bool = True, | |
pos_enc_class=PositionalEncoding, | |
normalize_before: bool = True, | |
concat_after: bool = False, | |
conv_wshare: int = 4, | |
conv_kernel_length: Sequence[int] = (11, 11, 11, 11, 11, 11), | |
conv_usebias: int = False, | |
): | |
if len(conv_kernel_length) != num_blocks: | |
raise ValueError( | |
"conv_kernel_length must have equal number of values to num_blocks: " | |
f"{len(conv_kernel_length)} != {num_blocks}" | |
) | |
super().__init__( | |
vocab_size=vocab_size, | |
encoder_output_size=encoder_output_size, | |
dropout_rate=dropout_rate, | |
positional_dropout_rate=positional_dropout_rate, | |
input_layer=input_layer, | |
use_output_layer=use_output_layer, | |
pos_enc_class=pos_enc_class, | |
normalize_before=normalize_before, | |
) | |
attention_dim = encoder_output_size | |
self.decoders = repeat( | |
num_blocks, | |
lambda lnum: DecoderLayer( | |
attention_dim, | |
LightweightConvolution( | |
wshare=conv_wshare, | |
n_feat=attention_dim, | |
dropout_rate=self_attention_dropout_rate, | |
kernel_size=conv_kernel_length[lnum], | |
use_kernel_mask=True, | |
use_bias=conv_usebias, | |
), | |
MultiHeadedAttention( | |
attention_heads, attention_dim, src_attention_dropout_rate | |
), | |
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate), | |
dropout_rate, | |
normalize_before, | |
concat_after, | |
), | |
) | |
class LightweightConvolution2DTransformerDecoder(BaseTransformerDecoder): | |
def __init__( | |
self, | |
vocab_size: int, | |
encoder_output_size: int, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
self_attention_dropout_rate: float = 0.0, | |
src_attention_dropout_rate: float = 0.0, | |
input_layer: str = "embed", | |
use_output_layer: bool = True, | |
pos_enc_class=PositionalEncoding, | |
normalize_before: bool = True, | |
concat_after: bool = False, | |
conv_wshare: int = 4, | |
conv_kernel_length: Sequence[int] = (11, 11, 11, 11, 11, 11), | |
conv_usebias: int = False, | |
): | |
if len(conv_kernel_length) != num_blocks: | |
raise ValueError( | |
"conv_kernel_length must have equal number of values to num_blocks: " | |
f"{len(conv_kernel_length)} != {num_blocks}" | |
) | |
super().__init__( | |
vocab_size=vocab_size, | |
encoder_output_size=encoder_output_size, | |
dropout_rate=dropout_rate, | |
positional_dropout_rate=positional_dropout_rate, | |
input_layer=input_layer, | |
use_output_layer=use_output_layer, | |
pos_enc_class=pos_enc_class, | |
normalize_before=normalize_before, | |
) | |
attention_dim = encoder_output_size | |
self.decoders = repeat( | |
num_blocks, | |
lambda lnum: DecoderLayer( | |
attention_dim, | |
LightweightConvolution2D( | |
wshare=conv_wshare, | |
n_feat=attention_dim, | |
dropout_rate=self_attention_dropout_rate, | |
kernel_size=conv_kernel_length[lnum], | |
use_kernel_mask=True, | |
use_bias=conv_usebias, | |
), | |
MultiHeadedAttention( | |
attention_heads, attention_dim, src_attention_dropout_rate | |
), | |
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate), | |
dropout_rate, | |
normalize_before, | |
concat_after, | |
), | |
) | |
class DynamicConvolutionTransformerDecoder(BaseTransformerDecoder): | |
def __init__( | |
self, | |
vocab_size: int, | |
encoder_output_size: int, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
self_attention_dropout_rate: float = 0.0, | |
src_attention_dropout_rate: float = 0.0, | |
input_layer: str = "embed", | |
use_output_layer: bool = True, | |
pos_enc_class=PositionalEncoding, | |
normalize_before: bool = True, | |
concat_after: bool = False, | |
conv_wshare: int = 4, | |
conv_kernel_length: Sequence[int] = (11, 11, 11, 11, 11, 11), | |
conv_usebias: int = False, | |
): | |
if len(conv_kernel_length) != num_blocks: | |
raise ValueError( | |
"conv_kernel_length must have equal number of values to num_blocks: " | |
f"{len(conv_kernel_length)} != {num_blocks}" | |
) | |
super().__init__( | |
vocab_size=vocab_size, | |
encoder_output_size=encoder_output_size, | |
dropout_rate=dropout_rate, | |
positional_dropout_rate=positional_dropout_rate, | |
input_layer=input_layer, | |
use_output_layer=use_output_layer, | |
pos_enc_class=pos_enc_class, | |
normalize_before=normalize_before, | |
) | |
attention_dim = encoder_output_size | |
self.decoders = repeat( | |
num_blocks, | |
lambda lnum: DecoderLayer( | |
attention_dim, | |
DynamicConvolution( | |
wshare=conv_wshare, | |
n_feat=attention_dim, | |
dropout_rate=self_attention_dropout_rate, | |
kernel_size=conv_kernel_length[lnum], | |
use_kernel_mask=True, | |
use_bias=conv_usebias, | |
), | |
MultiHeadedAttention( | |
attention_heads, attention_dim, src_attention_dropout_rate | |
), | |
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate), | |
dropout_rate, | |
normalize_before, | |
concat_after, | |
), | |
) | |
class DynamicConvolution2DTransformerDecoder(BaseTransformerDecoder): | |
def __init__( | |
self, | |
vocab_size: int, | |
encoder_output_size: int, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
self_attention_dropout_rate: float = 0.0, | |
src_attention_dropout_rate: float = 0.0, | |
input_layer: str = "embed", | |
use_output_layer: bool = True, | |
pos_enc_class=PositionalEncoding, | |
normalize_before: bool = True, | |
concat_after: bool = False, | |
conv_wshare: int = 4, | |
conv_kernel_length: Sequence[int] = (11, 11, 11, 11, 11, 11), | |
conv_usebias: int = False, | |
): | |
if len(conv_kernel_length) != num_blocks: | |
raise ValueError( | |
"conv_kernel_length must have equal number of values to num_blocks: " | |
f"{len(conv_kernel_length)} != {num_blocks}" | |
) | |
super().__init__( | |
vocab_size=vocab_size, | |
encoder_output_size=encoder_output_size, | |
dropout_rate=dropout_rate, | |
positional_dropout_rate=positional_dropout_rate, | |
input_layer=input_layer, | |
use_output_layer=use_output_layer, | |
pos_enc_class=pos_enc_class, | |
normalize_before=normalize_before, | |
) | |
attention_dim = encoder_output_size | |
self.decoders = repeat( | |
num_blocks, | |
lambda lnum: DecoderLayer( | |
attention_dim, | |
DynamicConvolution2D( | |
wshare=conv_wshare, | |
n_feat=attention_dim, | |
dropout_rate=self_attention_dropout_rate, | |
kernel_size=conv_kernel_length[lnum], | |
use_kernel_mask=True, | |
use_bias=conv_usebias, | |
), | |
MultiHeadedAttention( | |
attention_heads, attention_dim, src_attention_dropout_rate | |
), | |
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate), | |
dropout_rate, | |
normalize_before, | |
concat_after, | |
), | |
) | |