martin
initial
67c46fd
raw
history blame
18.7 kB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright 2019 Shigeki Karita
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Positional Encoding Module."""
import math
import torch
import torch.nn.functional as F
from torch import einsum
def _pre_hook(
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
"""Perform pre-hook in load_state_dict for backward compatibility.
Note:
We saved self.pe until v.0.5.2 but we have omitted it later.
Therefore, we remove the item "pe" from `state_dict` for backward compatibility.
"""
k = prefix + "pe"
if k in state_dict:
state_dict.pop(k)
class PositionalEncoding(torch.nn.Module):
"""Positional encoding.
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_len (int): Maximum input length.
reverse (bool): Whether to reverse the input position. Only for
the class LegacyRelPositionalEncoding. We remove it in the current
class RelPositionalEncoding.
"""
def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False):
"""Construct an PositionalEncoding object."""
super(PositionalEncoding, self).__init__()
self.d_model = d_model
self.reverse = reverse
self.xscale = math.sqrt(self.d_model)
self.dropout = torch.nn.Dropout(p=dropout_rate)
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
self._register_load_state_dict_pre_hook(_pre_hook)
def extend_pe(self, x):
"""Reset the positional encodings."""
if self.pe is not None:
if self.pe.size(1) >= x.size(1):
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
pe = torch.zeros(x.size(1), self.d_model)
if self.reverse:
position = torch.arange(
x.size(1) - 1, -1, -1.0, dtype=torch.float32
).unsqueeze(1)
else:
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, x: torch.Tensor):
"""Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
"""
self.extend_pe(x)
x = x * self.xscale + self.pe[:, : x.size(1)]
return self.dropout(x)
class ScaledPositionalEncoding(PositionalEncoding):
"""Scaled positional encoding module.
See Sec. 3.2 https://arxiv.org/abs/1809.08895
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_len (int): Maximum input length.
"""
def __init__(self, d_model, dropout_rate, max_len=5000):
"""Initialize class."""
super().__init__(d_model=d_model, dropout_rate=dropout_rate, max_len=max_len)
self.alpha = torch.nn.Parameter(torch.tensor(1.0))
def reset_parameters(self):
"""Reset parameters."""
self.alpha.data = torch.tensor(1.0)
def forward(self, x):
"""Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
"""
self.extend_pe(x)
x = x + self.alpha * self.pe[:, : x.size(1)]
return self.dropout(x)
class LearnableFourierPosEnc(torch.nn.Module):
"""Learnable Fourier Features for Positional Encoding.
See https://arxiv.org/pdf/2106.02795.pdf
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_len (int): Maximum input length.
gamma (float): init parameter for the positional kernel variance
see https://arxiv.org/pdf/2106.02795.pdf.
apply_scaling (bool): Whether to scale the input before adding the pos encoding.
hidden_dim (int): if not None, we modulate the pos encodings with
an MLP whose hidden layer has hidden_dim neurons.
"""
def __init__(
self,
d_model,
dropout_rate=0.0,
max_len=5000,
gamma=1.0,
apply_scaling=False,
hidden_dim=None,
):
"""Initialize class."""
super(LearnableFourierPosEnc, self).__init__()
self.d_model = d_model
if apply_scaling:
self.xscale = math.sqrt(self.d_model)
else:
self.xscale = 1.0
self.dropout = torch.nn.Dropout(dropout_rate)
self.max_len = max_len
self.gamma = gamma
if self.gamma is None:
self.gamma = self.d_model // 2
assert (
d_model % 2 == 0
), "d_model should be divisible by two in order to use this layer."
self.w_r = torch.nn.Parameter(torch.empty(1, d_model // 2))
self._reset() # init the weights
self.hidden_dim = hidden_dim
if self.hidden_dim is not None:
self.mlp = torch.nn.Sequential(
torch.nn.Linear(d_model, hidden_dim),
torch.nn.GELU(),
torch.nn.Linear(hidden_dim, d_model),
)
def _reset(self):
self.w_r.data = torch.normal(
0, (1 / math.sqrt(self.gamma)), (1, self.d_model // 2)
)
def extend_pe(self, x):
"""Reset the positional encodings."""
position_v = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1).to(x)
cosine = torch.cos(torch.matmul(position_v, self.w_r))
sine = torch.sin(torch.matmul(position_v, self.w_r))
pos_enc = torch.cat((cosine, sine), -1)
pos_enc /= math.sqrt(self.d_model)
if self.hidden_dim is None:
return pos_enc.unsqueeze(0)
else:
return self.mlp(pos_enc.unsqueeze(0))
def forward(self, x: torch.Tensor):
"""Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
"""
pe = self.extend_pe(x)
x = x * self.xscale + pe
return self.dropout(x)
class LegacyRelPositionalEncoding(PositionalEncoding):
"""Relative positional encoding module (old version).
Details can be found in https://github.com/espnet/espnet/pull/2816.
See : Appendix B in https://arxiv.org/abs/1901.02860
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_len (int): Maximum input length.
"""
def __init__(self, d_model, dropout_rate, max_len=5000):
"""Initialize class."""
super().__init__(
d_model=d_model,
dropout_rate=dropout_rate,
max_len=max_len,
reverse=True,
)
def forward(self, x):
"""Compute positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
torch.Tensor: Positional embedding tensor (1, time, `*`).
"""
self.extend_pe(x)
x = x * self.xscale
pos_emb = self.pe[:, : x.size(1)]
return self.dropout(x), self.dropout(pos_emb)
class RelPositionalEncoding(torch.nn.Module):
"""Relative positional encoding module (new implementation).
Details can be found in https://github.com/espnet/espnet/pull/2816.
See : Appendix B in https://arxiv.org/abs/1901.02860
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_len (int): Maximum input length.
"""
def __init__(self, d_model, dropout_rate, max_len=5000):
"""Construct an PositionalEncoding object."""
super(RelPositionalEncoding, self).__init__()
self.d_model = d_model
self.xscale = math.sqrt(self.d_model)
self.dropout = torch.nn.Dropout(p=dropout_rate)
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
def extend_pe(self, x):
"""Reset the positional encodings."""
if self.pe is not None:
# self.pe contains both positive and negative parts
# the length of self.pe is 2 * input_len - 1
if self.pe.size(1) >= x.size(1) * 2 - 1:
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` means to the position of query vecotr and `j` means the
# position of key vector. We use position relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
pe_positive = torch.zeros(x.size(1), self.d_model)
pe_negative = torch.zeros(x.size(1), self.d_model)
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
pe_positive[:, 0::2] = torch.sin(position * div_term)
pe_positive[:, 1::2] = torch.cos(position * div_term)
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
# Reserve the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in https://arxiv.org/abs/1901.02860
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
pe_negative = pe_negative[1:].unsqueeze(0)
pe = torch.cat([pe_positive, pe_negative], dim=1)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, x: torch.Tensor):
"""Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
"""
self.extend_pe(x)
x = x * self.xscale
pos_emb = self.pe[
:,
self.pe.size(1) // 2 - x.size(1) + 1 : self.pe.size(1) // 2 + x.size(1),
]
return self.dropout(x), self.dropout(pos_emb)
class StreamPositionalEncoding(torch.nn.Module):
"""Streaming Positional encoding.
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_len (int): Maximum input length.
"""
def __init__(self, d_model, dropout_rate, max_len=5000):
"""Construct an PositionalEncoding object."""
super(StreamPositionalEncoding, self).__init__()
self.d_model = d_model
self.xscale = math.sqrt(self.d_model)
self.dropout = torch.nn.Dropout(p=dropout_rate)
self.pe = None
self.tmp = torch.tensor(0.0).expand(1, max_len)
self.extend_pe(self.tmp.size(1), self.tmp.device, self.tmp.dtype)
self._register_load_state_dict_pre_hook(_pre_hook)
def extend_pe(self, length, device, dtype):
"""Reset the positional encodings."""
if self.pe is not None:
if self.pe.size(1) >= length:
if self.pe.dtype != dtype or self.pe.device != device:
self.pe = self.pe.to(dtype=dtype, device=device)
return
pe = torch.zeros(length, self.d_model)
position = torch.arange(0, length, dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.pe = pe.to(device=device, dtype=dtype)
def forward(self, x: torch.Tensor, start_idx: int = 0):
"""Add positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
"""
self.extend_pe(x.size(1) + start_idx, x.device, x.dtype)
x = x * self.xscale + self.pe[:, start_idx : start_idx + x.size(1)]
return self.dropout(x)
class SinusoidalPositionEncoder(torch.nn.Module):
""" """
def __int__(self, d_model=80, dropout_rate=0.1):
pass
def encode(
self,
positions: torch.Tensor = None,
depth: int = None,
dtype: torch.dtype = torch.float32,
):
batch_size = positions.size(0)
positions = positions.type(dtype)
device = positions.device
log_timescale_increment = torch.log(
torch.tensor([10000], dtype=dtype, device=device)
) / (depth / 2 - 1)
inv_timescales = torch.exp(
torch.arange(depth / 2, device=device).type(dtype)
* (-log_timescale_increment)
)
inv_timescales = torch.reshape(inv_timescales, [batch_size, -1])
scaled_time = torch.reshape(positions, [1, -1, 1]) * torch.reshape(
inv_timescales, [1, 1, -1]
)
encoding = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2)
return encoding.type(dtype)
def forward(self, x):
batch_size, timesteps, input_dim = x.size()
positions = torch.arange(1, timesteps + 1, device=x.device)[None, :]
position_encoding = self.encode(positions, input_dim, x.dtype).to(x.device)
return x + position_encoding
class StreamSinusoidalPositionEncoder(torch.nn.Module):
""" """
def __int__(self, d_model=80, dropout_rate=0.1):
pass
def encode(
self,
positions: torch.Tensor = None,
depth: int = None,
dtype: torch.dtype = torch.float32,
):
batch_size = positions.size(0)
positions = positions.type(dtype)
log_timescale_increment = torch.log(torch.tensor([10000], dtype=dtype)) / (
depth / 2 - 1
)
inv_timescales = torch.exp(
torch.arange(depth / 2).type(dtype) * (-log_timescale_increment)
)
inv_timescales = torch.reshape(inv_timescales, [batch_size, -1])
scaled_time = torch.reshape(positions, [1, -1, 1]) * torch.reshape(
inv_timescales, [1, 1, -1]
)
encoding = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2)
return encoding.type(dtype)
def forward(self, x, cache=None):
batch_size, timesteps, input_dim = x.size()
start_idx = 0
if cache is not None:
start_idx = cache["start_idx"]
cache["start_idx"] += timesteps
positions = torch.arange(1, timesteps + start_idx + 1)[None, :]
position_encoding = self.encode(positions, input_dim, x.dtype).to(x.device)
return x + position_encoding[:, start_idx : start_idx + timesteps]
class StreamingRelPositionalEncoding(torch.nn.Module):
"""Relative positional encoding.
Args:
size: Module size.
max_len: Maximum input length.
dropout_rate: Dropout rate.
"""
def __init__(
self, size: int, dropout_rate: float = 0.0, max_len: int = 5000
) -> None:
"""Construct a RelativePositionalEncoding object."""
super().__init__()
self.size = size
self.pe = None
self.dropout = torch.nn.Dropout(p=dropout_rate)
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
self._register_load_state_dict_pre_hook(_pre_hook)
def extend_pe(self, x: torch.Tensor, left_context: int = 0) -> None:
"""Reset positional encoding.
Args:
x: Input sequences. (B, T, ?)
left_context: Number of frames in left context.
"""
time1 = x.size(1) + left_context
if self.pe is not None:
if self.pe.size(1) >= time1 * 2 - 1:
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(device=x.device, dtype=x.dtype)
return
pe_positive = torch.zeros(time1, self.size)
pe_negative = torch.zeros(time1, self.size)
position = torch.arange(0, time1, dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.size, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.size)
)
pe_positive[:, 0::2] = torch.sin(position * div_term)
pe_positive[:, 1::2] = torch.cos(position * div_term)
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
pe_negative = pe_negative[1:].unsqueeze(0)
self.pe = torch.cat([pe_positive, pe_negative], dim=1).to(
dtype=x.dtype, device=x.device
)
def forward(self, x: torch.Tensor, left_context: int = 0) -> torch.Tensor:
"""Compute positional encoding.
Args:
x: Input sequences. (B, T, ?)
left_context: Number of frames in left context.
Returns:
pos_enc: Positional embedding sequences. (B, 2 * (T - 1), ?)
"""
self.extend_pe(x, left_context=left_context)
time1 = x.size(1) + left_context
pos_enc = self.pe[
:, self.pe.size(1) // 2 - time1 + 1 : self.pe.size(1) // 2 + x.size(1)
]
pos_enc = self.dropout(pos_enc)
return pos_enc
class ScaledSinuEmbedding(torch.nn.Module):
def __init__(self, dim):
super().__init__()
self.scale = torch.nn.Parameter(
torch.ones(
1,
)
)
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
def forward(self, x):
n, device = x.shape[1], x.device
t = torch.arange(n, device=device).type_as(self.inv_freq)
sinu = einsum("i , j -> i j", t, self.inv_freq)
emb = torch.cat((sinu.sin(), sinu.cos()), dim=-1)
return emb * self.scale