Spaces:
Running
Running
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# Copyright 2019 Shigeki Karita | |
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
"""Positional Encoding Module.""" | |
import math | |
import torch | |
import torch.nn.functional as F | |
from torch import einsum | |
def _pre_hook( | |
state_dict, | |
prefix, | |
local_metadata, | |
strict, | |
missing_keys, | |
unexpected_keys, | |
error_msgs, | |
): | |
"""Perform pre-hook in load_state_dict for backward compatibility. | |
Note: | |
We saved self.pe until v.0.5.2 but we have omitted it later. | |
Therefore, we remove the item "pe" from `state_dict` for backward compatibility. | |
""" | |
k = prefix + "pe" | |
if k in state_dict: | |
state_dict.pop(k) | |
class PositionalEncoding(torch.nn.Module): | |
"""Positional encoding. | |
Args: | |
d_model (int): Embedding dimension. | |
dropout_rate (float): Dropout rate. | |
max_len (int): Maximum input length. | |
reverse (bool): Whether to reverse the input position. Only for | |
the class LegacyRelPositionalEncoding. We remove it in the current | |
class RelPositionalEncoding. | |
""" | |
def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False): | |
"""Construct an PositionalEncoding object.""" | |
super(PositionalEncoding, self).__init__() | |
self.d_model = d_model | |
self.reverse = reverse | |
self.xscale = math.sqrt(self.d_model) | |
self.dropout = torch.nn.Dropout(p=dropout_rate) | |
self.pe = None | |
self.extend_pe(torch.tensor(0.0).expand(1, max_len)) | |
self._register_load_state_dict_pre_hook(_pre_hook) | |
def extend_pe(self, x): | |
"""Reset the positional encodings.""" | |
if self.pe is not None: | |
if self.pe.size(1) >= x.size(1): | |
if self.pe.dtype != x.dtype or self.pe.device != x.device: | |
self.pe = self.pe.to(dtype=x.dtype, device=x.device) | |
return | |
pe = torch.zeros(x.size(1), self.d_model) | |
if self.reverse: | |
position = torch.arange( | |
x.size(1) - 1, -1, -1.0, dtype=torch.float32 | |
).unsqueeze(1) | |
else: | |
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, self.d_model, 2, dtype=torch.float32) | |
* -(math.log(10000.0) / self.d_model) | |
) | |
pe[:, 0::2] = torch.sin(position * div_term) | |
pe[:, 1::2] = torch.cos(position * div_term) | |
pe = pe.unsqueeze(0) | |
self.pe = pe.to(device=x.device, dtype=x.dtype) | |
def forward(self, x: torch.Tensor): | |
"""Add positional encoding. | |
Args: | |
x (torch.Tensor): Input tensor (batch, time, `*`). | |
Returns: | |
torch.Tensor: Encoded tensor (batch, time, `*`). | |
""" | |
self.extend_pe(x) | |
x = x * self.xscale + self.pe[:, : x.size(1)] | |
return self.dropout(x) | |
class ScaledPositionalEncoding(PositionalEncoding): | |
"""Scaled positional encoding module. | |
See Sec. 3.2 https://arxiv.org/abs/1809.08895 | |
Args: | |
d_model (int): Embedding dimension. | |
dropout_rate (float): Dropout rate. | |
max_len (int): Maximum input length. | |
""" | |
def __init__(self, d_model, dropout_rate, max_len=5000): | |
"""Initialize class.""" | |
super().__init__(d_model=d_model, dropout_rate=dropout_rate, max_len=max_len) | |
self.alpha = torch.nn.Parameter(torch.tensor(1.0)) | |
def reset_parameters(self): | |
"""Reset parameters.""" | |
self.alpha.data = torch.tensor(1.0) | |
def forward(self, x): | |
"""Add positional encoding. | |
Args: | |
x (torch.Tensor): Input tensor (batch, time, `*`). | |
Returns: | |
torch.Tensor: Encoded tensor (batch, time, `*`). | |
""" | |
self.extend_pe(x) | |
x = x + self.alpha * self.pe[:, : x.size(1)] | |
return self.dropout(x) | |
class LearnableFourierPosEnc(torch.nn.Module): | |
"""Learnable Fourier Features for Positional Encoding. | |
See https://arxiv.org/pdf/2106.02795.pdf | |
Args: | |
d_model (int): Embedding dimension. | |
dropout_rate (float): Dropout rate. | |
max_len (int): Maximum input length. | |
gamma (float): init parameter for the positional kernel variance | |
see https://arxiv.org/pdf/2106.02795.pdf. | |
apply_scaling (bool): Whether to scale the input before adding the pos encoding. | |
hidden_dim (int): if not None, we modulate the pos encodings with | |
an MLP whose hidden layer has hidden_dim neurons. | |
""" | |
def __init__( | |
self, | |
d_model, | |
dropout_rate=0.0, | |
max_len=5000, | |
gamma=1.0, | |
apply_scaling=False, | |
hidden_dim=None, | |
): | |
"""Initialize class.""" | |
super(LearnableFourierPosEnc, self).__init__() | |
self.d_model = d_model | |
if apply_scaling: | |
self.xscale = math.sqrt(self.d_model) | |
else: | |
self.xscale = 1.0 | |
self.dropout = torch.nn.Dropout(dropout_rate) | |
self.max_len = max_len | |
self.gamma = gamma | |
if self.gamma is None: | |
self.gamma = self.d_model // 2 | |
assert ( | |
d_model % 2 == 0 | |
), "d_model should be divisible by two in order to use this layer." | |
self.w_r = torch.nn.Parameter(torch.empty(1, d_model // 2)) | |
self._reset() # init the weights | |
self.hidden_dim = hidden_dim | |
if self.hidden_dim is not None: | |
self.mlp = torch.nn.Sequential( | |
torch.nn.Linear(d_model, hidden_dim), | |
torch.nn.GELU(), | |
torch.nn.Linear(hidden_dim, d_model), | |
) | |
def _reset(self): | |
self.w_r.data = torch.normal( | |
0, (1 / math.sqrt(self.gamma)), (1, self.d_model // 2) | |
) | |
def extend_pe(self, x): | |
"""Reset the positional encodings.""" | |
position_v = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1).to(x) | |
cosine = torch.cos(torch.matmul(position_v, self.w_r)) | |
sine = torch.sin(torch.matmul(position_v, self.w_r)) | |
pos_enc = torch.cat((cosine, sine), -1) | |
pos_enc /= math.sqrt(self.d_model) | |
if self.hidden_dim is None: | |
return pos_enc.unsqueeze(0) | |
else: | |
return self.mlp(pos_enc.unsqueeze(0)) | |
def forward(self, x: torch.Tensor): | |
"""Add positional encoding. | |
Args: | |
x (torch.Tensor): Input tensor (batch, time, `*`). | |
Returns: | |
torch.Tensor: Encoded tensor (batch, time, `*`). | |
""" | |
pe = self.extend_pe(x) | |
x = x * self.xscale + pe | |
return self.dropout(x) | |
class LegacyRelPositionalEncoding(PositionalEncoding): | |
"""Relative positional encoding module (old version). | |
Details can be found in https://github.com/espnet/espnet/pull/2816. | |
See : Appendix B in https://arxiv.org/abs/1901.02860 | |
Args: | |
d_model (int): Embedding dimension. | |
dropout_rate (float): Dropout rate. | |
max_len (int): Maximum input length. | |
""" | |
def __init__(self, d_model, dropout_rate, max_len=5000): | |
"""Initialize class.""" | |
super().__init__( | |
d_model=d_model, | |
dropout_rate=dropout_rate, | |
max_len=max_len, | |
reverse=True, | |
) | |
def forward(self, x): | |
"""Compute positional encoding. | |
Args: | |
x (torch.Tensor): Input tensor (batch, time, `*`). | |
Returns: | |
torch.Tensor: Encoded tensor (batch, time, `*`). | |
torch.Tensor: Positional embedding tensor (1, time, `*`). | |
""" | |
self.extend_pe(x) | |
x = x * self.xscale | |
pos_emb = self.pe[:, : x.size(1)] | |
return self.dropout(x), self.dropout(pos_emb) | |
class RelPositionalEncoding(torch.nn.Module): | |
"""Relative positional encoding module (new implementation). | |
Details can be found in https://github.com/espnet/espnet/pull/2816. | |
See : Appendix B in https://arxiv.org/abs/1901.02860 | |
Args: | |
d_model (int): Embedding dimension. | |
dropout_rate (float): Dropout rate. | |
max_len (int): Maximum input length. | |
""" | |
def __init__(self, d_model, dropout_rate, max_len=5000): | |
"""Construct an PositionalEncoding object.""" | |
super(RelPositionalEncoding, self).__init__() | |
self.d_model = d_model | |
self.xscale = math.sqrt(self.d_model) | |
self.dropout = torch.nn.Dropout(p=dropout_rate) | |
self.pe = None | |
self.extend_pe(torch.tensor(0.0).expand(1, max_len)) | |
def extend_pe(self, x): | |
"""Reset the positional encodings.""" | |
if self.pe is not None: | |
# self.pe contains both positive and negative parts | |
# the length of self.pe is 2 * input_len - 1 | |
if self.pe.size(1) >= x.size(1) * 2 - 1: | |
if self.pe.dtype != x.dtype or self.pe.device != x.device: | |
self.pe = self.pe.to(dtype=x.dtype, device=x.device) | |
return | |
# Suppose `i` means to the position of query vecotr and `j` means the | |
# position of key vector. We use position relative positions when keys | |
# are to the left (i>j) and negative relative positions otherwise (i<j). | |
pe_positive = torch.zeros(x.size(1), self.d_model) | |
pe_negative = torch.zeros(x.size(1), self.d_model) | |
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, self.d_model, 2, dtype=torch.float32) | |
* -(math.log(10000.0) / self.d_model) | |
) | |
pe_positive[:, 0::2] = torch.sin(position * div_term) | |
pe_positive[:, 1::2] = torch.cos(position * div_term) | |
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) | |
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) | |
# Reserve the order of positive indices and concat both positive and | |
# negative indices. This is used to support the shifting trick | |
# as in https://arxiv.org/abs/1901.02860 | |
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) | |
pe_negative = pe_negative[1:].unsqueeze(0) | |
pe = torch.cat([pe_positive, pe_negative], dim=1) | |
self.pe = pe.to(device=x.device, dtype=x.dtype) | |
def forward(self, x: torch.Tensor): | |
"""Add positional encoding. | |
Args: | |
x (torch.Tensor): Input tensor (batch, time, `*`). | |
Returns: | |
torch.Tensor: Encoded tensor (batch, time, `*`). | |
""" | |
self.extend_pe(x) | |
x = x * self.xscale | |
pos_emb = self.pe[ | |
:, | |
self.pe.size(1) // 2 - x.size(1) + 1 : self.pe.size(1) // 2 + x.size(1), | |
] | |
return self.dropout(x), self.dropout(pos_emb) | |
class StreamPositionalEncoding(torch.nn.Module): | |
"""Streaming Positional encoding. | |
Args: | |
d_model (int): Embedding dimension. | |
dropout_rate (float): Dropout rate. | |
max_len (int): Maximum input length. | |
""" | |
def __init__(self, d_model, dropout_rate, max_len=5000): | |
"""Construct an PositionalEncoding object.""" | |
super(StreamPositionalEncoding, self).__init__() | |
self.d_model = d_model | |
self.xscale = math.sqrt(self.d_model) | |
self.dropout = torch.nn.Dropout(p=dropout_rate) | |
self.pe = None | |
self.tmp = torch.tensor(0.0).expand(1, max_len) | |
self.extend_pe(self.tmp.size(1), self.tmp.device, self.tmp.dtype) | |
self._register_load_state_dict_pre_hook(_pre_hook) | |
def extend_pe(self, length, device, dtype): | |
"""Reset the positional encodings.""" | |
if self.pe is not None: | |
if self.pe.size(1) >= length: | |
if self.pe.dtype != dtype or self.pe.device != device: | |
self.pe = self.pe.to(dtype=dtype, device=device) | |
return | |
pe = torch.zeros(length, self.d_model) | |
position = torch.arange(0, length, dtype=torch.float32).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, self.d_model, 2, dtype=torch.float32) | |
* -(math.log(10000.0) / self.d_model) | |
) | |
pe[:, 0::2] = torch.sin(position * div_term) | |
pe[:, 1::2] = torch.cos(position * div_term) | |
pe = pe.unsqueeze(0) | |
self.pe = pe.to(device=device, dtype=dtype) | |
def forward(self, x: torch.Tensor, start_idx: int = 0): | |
"""Add positional encoding. | |
Args: | |
x (torch.Tensor): Input tensor (batch, time, `*`). | |
Returns: | |
torch.Tensor: Encoded tensor (batch, time, `*`). | |
""" | |
self.extend_pe(x.size(1) + start_idx, x.device, x.dtype) | |
x = x * self.xscale + self.pe[:, start_idx : start_idx + x.size(1)] | |
return self.dropout(x) | |
class SinusoidalPositionEncoder(torch.nn.Module): | |
""" """ | |
def __int__(self, d_model=80, dropout_rate=0.1): | |
pass | |
def encode( | |
self, | |
positions: torch.Tensor = None, | |
depth: int = None, | |
dtype: torch.dtype = torch.float32, | |
): | |
batch_size = positions.size(0) | |
positions = positions.type(dtype) | |
device = positions.device | |
log_timescale_increment = torch.log( | |
torch.tensor([10000], dtype=dtype, device=device) | |
) / (depth / 2 - 1) | |
inv_timescales = torch.exp( | |
torch.arange(depth / 2, device=device).type(dtype) | |
* (-log_timescale_increment) | |
) | |
inv_timescales = torch.reshape(inv_timescales, [batch_size, -1]) | |
scaled_time = torch.reshape(positions, [1, -1, 1]) * torch.reshape( | |
inv_timescales, [1, 1, -1] | |
) | |
encoding = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2) | |
return encoding.type(dtype) | |
def forward(self, x): | |
batch_size, timesteps, input_dim = x.size() | |
positions = torch.arange(1, timesteps + 1, device=x.device)[None, :] | |
position_encoding = self.encode(positions, input_dim, x.dtype).to(x.device) | |
return x + position_encoding | |
class StreamSinusoidalPositionEncoder(torch.nn.Module): | |
""" """ | |
def __int__(self, d_model=80, dropout_rate=0.1): | |
pass | |
def encode( | |
self, | |
positions: torch.Tensor = None, | |
depth: int = None, | |
dtype: torch.dtype = torch.float32, | |
): | |
batch_size = positions.size(0) | |
positions = positions.type(dtype) | |
log_timescale_increment = torch.log(torch.tensor([10000], dtype=dtype)) / ( | |
depth / 2 - 1 | |
) | |
inv_timescales = torch.exp( | |
torch.arange(depth / 2).type(dtype) * (-log_timescale_increment) | |
) | |
inv_timescales = torch.reshape(inv_timescales, [batch_size, -1]) | |
scaled_time = torch.reshape(positions, [1, -1, 1]) * torch.reshape( | |
inv_timescales, [1, 1, -1] | |
) | |
encoding = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2) | |
return encoding.type(dtype) | |
def forward(self, x, cache=None): | |
batch_size, timesteps, input_dim = x.size() | |
start_idx = 0 | |
if cache is not None: | |
start_idx = cache["start_idx"] | |
cache["start_idx"] += timesteps | |
positions = torch.arange(1, timesteps + start_idx + 1)[None, :] | |
position_encoding = self.encode(positions, input_dim, x.dtype).to(x.device) | |
return x + position_encoding[:, start_idx : start_idx + timesteps] | |
class StreamingRelPositionalEncoding(torch.nn.Module): | |
"""Relative positional encoding. | |
Args: | |
size: Module size. | |
max_len: Maximum input length. | |
dropout_rate: Dropout rate. | |
""" | |
def __init__( | |
self, size: int, dropout_rate: float = 0.0, max_len: int = 5000 | |
) -> None: | |
"""Construct a RelativePositionalEncoding object.""" | |
super().__init__() | |
self.size = size | |
self.pe = None | |
self.dropout = torch.nn.Dropout(p=dropout_rate) | |
self.extend_pe(torch.tensor(0.0).expand(1, max_len)) | |
self._register_load_state_dict_pre_hook(_pre_hook) | |
def extend_pe(self, x: torch.Tensor, left_context: int = 0) -> None: | |
"""Reset positional encoding. | |
Args: | |
x: Input sequences. (B, T, ?) | |
left_context: Number of frames in left context. | |
""" | |
time1 = x.size(1) + left_context | |
if self.pe is not None: | |
if self.pe.size(1) >= time1 * 2 - 1: | |
if self.pe.dtype != x.dtype or self.pe.device != x.device: | |
self.pe = self.pe.to(device=x.device, dtype=x.dtype) | |
return | |
pe_positive = torch.zeros(time1, self.size) | |
pe_negative = torch.zeros(time1, self.size) | |
position = torch.arange(0, time1, dtype=torch.float32).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, self.size, 2, dtype=torch.float32) | |
* -(math.log(10000.0) / self.size) | |
) | |
pe_positive[:, 0::2] = torch.sin(position * div_term) | |
pe_positive[:, 1::2] = torch.cos(position * div_term) | |
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) | |
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) | |
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) | |
pe_negative = pe_negative[1:].unsqueeze(0) | |
self.pe = torch.cat([pe_positive, pe_negative], dim=1).to( | |
dtype=x.dtype, device=x.device | |
) | |
def forward(self, x: torch.Tensor, left_context: int = 0) -> torch.Tensor: | |
"""Compute positional encoding. | |
Args: | |
x: Input sequences. (B, T, ?) | |
left_context: Number of frames in left context. | |
Returns: | |
pos_enc: Positional embedding sequences. (B, 2 * (T - 1), ?) | |
""" | |
self.extend_pe(x, left_context=left_context) | |
time1 = x.size(1) + left_context | |
pos_enc = self.pe[ | |
:, self.pe.size(1) // 2 - time1 + 1 : self.pe.size(1) // 2 + x.size(1) | |
] | |
pos_enc = self.dropout(pos_enc) | |
return pos_enc | |
class ScaledSinuEmbedding(torch.nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.scale = torch.nn.Parameter( | |
torch.ones( | |
1, | |
) | |
) | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) | |
self.register_buffer("inv_freq", inv_freq) | |
def forward(self, x): | |
n, device = x.shape[1], x.device | |
t = torch.arange(n, device=device).type_as(self.inv_freq) | |
sinu = einsum("i , j -> i j", t, self.inv_freq) | |
emb = torch.cat((sinu.sin(), sinu.cos()), dim=-1) | |
return emb * self.scale | |