Spaces:
Running
Running
# Copyright 2019 Shigeki Karita | |
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
"""Transformer encoder definition.""" | |
from typing import List | |
from typing import Optional | |
from typing import Tuple | |
import torch | |
from torch import nn | |
import logging | |
from funasr_detach.models.transformer.attention import MultiHeadedAttention | |
from funasr_detach.models.transformer.embedding import PositionalEncoding | |
from funasr_detach.models.transformer.layer_norm import LayerNorm | |
from funasr_detach.models.transformer.utils.multi_layer_conv import Conv1dLinear | |
from funasr_detach.models.transformer.utils.multi_layer_conv import MultiLayeredConv1d | |
from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask | |
from funasr_detach.models.transformer.positionwise_feed_forward import ( | |
PositionwiseFeedForward, | |
) | |
from funasr_detach.models.transformer.utils.repeat import repeat | |
from funasr_detach.models.ctc.ctc import CTC | |
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling | |
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling2 | |
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling6 | |
from funasr_detach.models.transformer.utils.subsampling import Conv2dSubsampling8 | |
from funasr_detach.models.transformer.utils.subsampling import TooShortUttError | |
from funasr_detach.models.transformer.utils.subsampling import check_short_utt | |
from funasr_detach.register import tables | |
class EncoderLayer(nn.Module): | |
"""Encoder layer module. | |
Args: | |
size (int): Input dimension. | |
self_attn (torch.nn.Module): Self-attention module instance. | |
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance | |
can be used as the argument. | |
feed_forward (torch.nn.Module): Feed-forward module instance. | |
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance | |
can be used as the argument. | |
dropout_rate (float): Dropout rate. | |
normalize_before (bool): Whether to use layer_norm before the first block. | |
concat_after (bool): Whether to concat attention layer's input and output. | |
if True, additional linear will be applied. | |
i.e. x -> x + linear(concat(x, att(x))) | |
if False, no additional linear will be applied. i.e. x -> x + att(x) | |
stochastic_depth_rate (float): Proability to skip this layer. | |
During training, the layer may skip residual computation and return input | |
as-is with given probability. | |
""" | |
def __init__( | |
self, | |
size, | |
self_attn, | |
feed_forward, | |
dropout_rate, | |
normalize_before=True, | |
concat_after=False, | |
stochastic_depth_rate=0.0, | |
): | |
"""Construct an EncoderLayer object.""" | |
super(EncoderLayer, self).__init__() | |
self.self_attn = self_attn | |
self.feed_forward = feed_forward | |
self.norm1 = LayerNorm(size) | |
self.norm2 = LayerNorm(size) | |
self.dropout = nn.Dropout(dropout_rate) | |
self.size = size | |
self.normalize_before = normalize_before | |
self.concat_after = concat_after | |
if self.concat_after: | |
self.concat_linear = nn.Linear(size + size, size) | |
self.stochastic_depth_rate = stochastic_depth_rate | |
def forward(self, x, mask, cache=None): | |
"""Compute encoded features. | |
Args: | |
x_input (torch.Tensor): Input tensor (#batch, time, size). | |
mask (torch.Tensor): Mask tensor for the input (#batch, time). | |
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size). | |
Returns: | |
torch.Tensor: Output tensor (#batch, time, size). | |
torch.Tensor: Mask tensor (#batch, time). | |
""" | |
skip_layer = False | |
# with stochastic depth, residual connection `x + f(x)` becomes | |
# `x <- x + 1 / (1 - p) * f(x)` at training time. | |
stoch_layer_coeff = 1.0 | |
if self.training and self.stochastic_depth_rate > 0: | |
skip_layer = torch.rand(1).item() < self.stochastic_depth_rate | |
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate) | |
if skip_layer: | |
if cache is not None: | |
x = torch.cat([cache, x], dim=1) | |
return x, mask | |
residual = x | |
if self.normalize_before: | |
x = self.norm1(x) | |
if cache is None: | |
x_q = x | |
else: | |
assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size) | |
x_q = x[:, -1:, :] | |
residual = residual[:, -1:, :] | |
mask = None if mask is None else mask[:, -1:, :] | |
if self.concat_after: | |
x_concat = torch.cat((x, self.self_attn(x_q, x, x, mask)), dim=-1) | |
x = residual + stoch_layer_coeff * self.concat_linear(x_concat) | |
else: | |
x = residual + stoch_layer_coeff * self.dropout( | |
self.self_attn(x_q, x, x, mask) | |
) | |
if not self.normalize_before: | |
x = self.norm1(x) | |
residual = x | |
if self.normalize_before: | |
x = self.norm2(x) | |
x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x)) | |
if not self.normalize_before: | |
x = self.norm2(x) | |
if cache is not None: | |
x = torch.cat([cache, x], dim=1) | |
return x, mask | |
class TransformerEncoder(nn.Module): | |
"""Transformer encoder module. | |
Args: | |
input_size: input dim | |
output_size: dimension of attention | |
attention_heads: the number of heads of multi head attention | |
linear_units: the number of units of position-wise feed forward | |
num_blocks: the number of decoder blocks | |
dropout_rate: dropout rate | |
attention_dropout_rate: dropout rate in attention | |
positional_dropout_rate: dropout rate after adding positional encoding | |
input_layer: input layer type | |
pos_enc_class: PositionalEncoding or ScaledPositionalEncoding | |
normalize_before: whether to use layer_norm before the first block | |
concat_after: whether to concat attention layer's input and output | |
if True, additional linear will be applied. | |
i.e. x -> x + linear(concat(x, att(x))) | |
if False, no additional linear will be applied. | |
i.e. x -> x + att(x) | |
positionwise_layer_type: linear of conv1d | |
positionwise_conv_kernel_size: kernel size of positionwise conv1d layer | |
padding_idx: padding_idx for input_layer=embed | |
""" | |
def __init__( | |
self, | |
input_size: int, | |
output_size: int = 256, | |
attention_heads: int = 4, | |
linear_units: int = 2048, | |
num_blocks: int = 6, | |
dropout_rate: float = 0.1, | |
positional_dropout_rate: float = 0.1, | |
attention_dropout_rate: float = 0.0, | |
input_layer: Optional[str] = "conv2d", | |
pos_enc_class=PositionalEncoding, | |
normalize_before: bool = True, | |
concat_after: bool = False, | |
positionwise_layer_type: str = "linear", | |
positionwise_conv_kernel_size: int = 1, | |
padding_idx: int = -1, | |
interctc_layer_idx: List[int] = [], | |
interctc_use_conditioning: bool = False, | |
): | |
super().__init__() | |
self._output_size = output_size | |
if input_layer == "linear": | |
self.embed = torch.nn.Sequential( | |
torch.nn.Linear(input_size, output_size), | |
torch.nn.LayerNorm(output_size), | |
torch.nn.Dropout(dropout_rate), | |
torch.nn.ReLU(), | |
pos_enc_class(output_size, positional_dropout_rate), | |
) | |
elif input_layer == "conv2d": | |
self.embed = Conv2dSubsampling(input_size, output_size, dropout_rate) | |
elif input_layer == "conv2d2": | |
self.embed = Conv2dSubsampling2(input_size, output_size, dropout_rate) | |
elif input_layer == "conv2d6": | |
self.embed = Conv2dSubsampling6(input_size, output_size, dropout_rate) | |
elif input_layer == "conv2d8": | |
self.embed = Conv2dSubsampling8(input_size, output_size, dropout_rate) | |
elif input_layer == "embed": | |
self.embed = torch.nn.Sequential( | |
torch.nn.Embedding(input_size, output_size, padding_idx=padding_idx), | |
pos_enc_class(output_size, positional_dropout_rate), | |
) | |
elif input_layer is None: | |
if input_size == output_size: | |
self.embed = None | |
else: | |
self.embed = torch.nn.Linear(input_size, output_size) | |
else: | |
raise ValueError("unknown input_layer: " + input_layer) | |
self.normalize_before = normalize_before | |
if positionwise_layer_type == "linear": | |
positionwise_layer = PositionwiseFeedForward | |
positionwise_layer_args = ( | |
output_size, | |
linear_units, | |
dropout_rate, | |
) | |
elif positionwise_layer_type == "conv1d": | |
positionwise_layer = MultiLayeredConv1d | |
positionwise_layer_args = ( | |
output_size, | |
linear_units, | |
positionwise_conv_kernel_size, | |
dropout_rate, | |
) | |
elif positionwise_layer_type == "conv1d-linear": | |
positionwise_layer = Conv1dLinear | |
positionwise_layer_args = ( | |
output_size, | |
linear_units, | |
positionwise_conv_kernel_size, | |
dropout_rate, | |
) | |
else: | |
raise NotImplementedError("Support only linear or conv1d.") | |
self.encoders = repeat( | |
num_blocks, | |
lambda lnum: EncoderLayer( | |
output_size, | |
MultiHeadedAttention( | |
attention_heads, output_size, attention_dropout_rate | |
), | |
positionwise_layer(*positionwise_layer_args), | |
dropout_rate, | |
normalize_before, | |
concat_after, | |
), | |
) | |
if self.normalize_before: | |
self.after_norm = LayerNorm(output_size) | |
self.interctc_layer_idx = interctc_layer_idx | |
if len(interctc_layer_idx) > 0: | |
assert 0 < min(interctc_layer_idx) and max(interctc_layer_idx) < num_blocks | |
self.interctc_use_conditioning = interctc_use_conditioning | |
self.conditioning_layer = None | |
def output_size(self) -> int: | |
return self._output_size | |
def forward( | |
self, | |
xs_pad: torch.Tensor, | |
ilens: torch.Tensor, | |
prev_states: torch.Tensor = None, | |
ctc: CTC = None, | |
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: | |
"""Embed positions in tensor. | |
Args: | |
xs_pad: input tensor (B, L, D) | |
ilens: input length (B) | |
prev_states: Not to be used now. | |
Returns: | |
position embedded tensor and mask | |
""" | |
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device) | |
if self.embed is None: | |
xs_pad = xs_pad | |
elif ( | |
isinstance(self.embed, Conv2dSubsampling) | |
or isinstance(self.embed, Conv2dSubsampling2) | |
or isinstance(self.embed, Conv2dSubsampling6) | |
or isinstance(self.embed, Conv2dSubsampling8) | |
): | |
short_status, limit_size = check_short_utt(self.embed, xs_pad.size(1)) | |
if short_status: | |
raise TooShortUttError( | |
f"has {xs_pad.size(1)} frames and is too short for subsampling " | |
+ f"(it needs more than {limit_size} frames), return empty results", | |
xs_pad.size(1), | |
limit_size, | |
) | |
xs_pad, masks = self.embed(xs_pad, masks) | |
else: | |
xs_pad = self.embed(xs_pad) | |
intermediate_outs = [] | |
if len(self.interctc_layer_idx) == 0: | |
xs_pad, masks = self.encoders(xs_pad, masks) | |
else: | |
for layer_idx, encoder_layer in enumerate(self.encoders): | |
xs_pad, masks = encoder_layer(xs_pad, masks) | |
if layer_idx + 1 in self.interctc_layer_idx: | |
encoder_out = xs_pad | |
# intermediate outputs are also normalized | |
if self.normalize_before: | |
encoder_out = self.after_norm(encoder_out) | |
intermediate_outs.append((layer_idx + 1, encoder_out)) | |
if self.interctc_use_conditioning: | |
ctc_out = ctc.softmax(encoder_out) | |
xs_pad = xs_pad + self.conditioning_layer(ctc_out) | |
if self.normalize_before: | |
xs_pad = self.after_norm(xs_pad) | |
olens = masks.squeeze(1).sum(1) | |
if len(intermediate_outs) > 0: | |
return (xs_pad, intermediate_outs), olens, None | |
return xs_pad, olens, None | |